Skip to main content

Advertisement

Log in

How resource information backgrounds trigger post-merger integration and technology innovation? A dynamic analysis of resource similarity and complementarity

  • Manuscript
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

Overseas mergers and acquisitions (M&A) proposed by companies from emerging economies have been aiming to secure outward technology sourcing from developed countries in order to improve their technology innovation abilities in recent years. This paper proposes a comprehensive analytical framework of post-merger integration’s influence on technology innovation by global game modeling. We show how different resource similarity and resource complementarity backgrounds of the acquirer and target companies can affect post-merger strategies and technology innovation output through multi-stage analysis with an asymmetrical payoff structure. We focus on two main dimensions of post-merger integration, which are integration degree and target autonomy. Equilibrium analysis that is based on potential innovation output signals show that resource similarity has a positive relation with integration and a negative relation with target autonomy in overseas M&A; however, resource complementarity has the opposite effects compared with resource similarity. The positive interaction between resource similarity and complementarity will trigger more M&A and increase the degrees of integration and autonomy; M&A integration has a positive impact on technology innovation output. The innovation growth of the acquiring company is affected by the effectiveness of the post-merger process and the interaction of substitution elasticity with resource potential difference. Our study provides insight into the factors driving post-merger decisions and contributes to a multi-stage resource-based understanding of technology innovation induced by overseas post-merger integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The global game is first studied by Carlsson and van Damme (1993). It models economic environment with uncertain economic fundamentals summarized by a state theta and each player observes a different signal of state with a small amount of noise.

  2. Latin Hypercube Sampling is used to test the effects of jointly varying the parameters in the model (Scott et al. 2016).

  3. In their empirical analysis of knowledge driving M&As, the marginal contribution of technology similarity is 6.64 − 3.164*2*sim. The marginal contribution of technology complementary is 3.772; along with the descriptive statistics data provided in theirs, the mean value of technology similarity is 0.45. By calculation, technology similarity has a marginal contribution of 3.7924, which is very close to that of technology complementarity.

  4. The Boston Consulting Group (BCG): Gearing up new-era China’s outbound M&A Sep 2015 CHN.

References

  • Ahuja G, Katila R (2001) Technological acquisitions and the innovation performance of acquiring firms: a longitudinal study. Strateg Manag J 22(3):197–220

    Article  Google Scholar 

  • Banal-Estañol A, Seldeslachts J (2011) Merger failures. J Econ & Manag Strateg 20(2):589–624

    Article  Google Scholar 

  • Barney JB (1991) Firm resources and sustained competitive advantage. J Manag 17(1):99–120

    Google Scholar 

  • Bauer F, Matzler K (2014) Antecedents of M&A success: the role of strategic complementarity, cultural fit, and degree and speed of integration. Strateg Manag J 35(2):269–291

    Article  Google Scholar 

  • Broede G, Voorn G, Ligtenberg A (2016) Which sensitivity analysis method should I use for my agent-based model? J Artif Soc Soc Sim 19(1):5

    Google Scholar 

  • Carlsson H, van Damme E (1993) Global games and equilibrium selection. Econometrica 61(5):989–1018

    Article  Google Scholar 

  • Colombo MG, Rabbiosi L (2014) Technological similarity, post-acquisition R&D reorganization, and innovation performance in horizontal acquisitions. Res Policy 43(6):1039–1054

    Article  Google Scholar 

  • Datta DK, Grant JH (1990) Relationships between type of acquisition, the autonomy given to the acquired firm, and acquisition success: an empirical analysis. J Manag 16(1):29–44

    Google Scholar 

  • Farrell J, Shapiro C (2001) Scale economies and synergies in horizontal merger analysis. Antitrust Law J 68:685–710

    Google Scholar 

  • Frantz TL (2012) A social network view of post-merger integration. Advances in M&As 10:161–176

    Google Scholar 

  • Gary P (1994) Knowledge, integration, and the locus of learning: an empirical analysis of process development. Strateg Manag J 15:85–100

    Google Scholar 

  • Haspeslagh PC, Jemison DB (1991) Managing acquisitions: creating value through corporate renewal. Free Press, New York

    Google Scholar 

  • Ishii J, Xuan Y (2014) Acquirer-target social ties and merger outcomes. J Financ Econ 112:344–363

    Article  Google Scholar 

  • Jan B, Kai L (2014) Corporate innovations and mergers and acquisitions. J Financ 69(12):1923–1960

    Google Scholar 

  • Kapoor R, Lim K (2007) The impact of acquisitions on the productivity of inventors at semiconductor firms: a synthesis of knowledge-based and incentive-based perspectives. Acad Manag J 50:1133–1155

    Article  Google Scholar 

  • Kaul A, Wu B (2015) A capabilities-based perspective of target selection in acquisitions. Strateg Manag J. doi:10.1002/smj.2389

    Google Scholar 

  • Khatib RE, Fogel K, Jandik T (2015) CEO network centrality and merger performance. J Financ Econ 116:349–382

    Article  Google Scholar 

  • Kim JY, Finkelstein S (2009) The effects of strategic and market complementarity on acquisition performance: evidence from the US commercial banking industry, 1989-2001. Strateg Manag J 30:617–646

    Article  Google Scholar 

  • Larsson R, Finkelstein S (1999) Integrating strategic, organizational, and human resource perspectives on mergers and acquisitions: a case survey of synergy realization. Organ Sci 10:1–26

    Article  Google Scholar 

  • Lubatkin M, Florin J, Lane P (2001) Learning together and apart: a model of reciprocal interfirm learning. Hum Relat 54:1353–1382

    Article  Google Scholar 

  • Makri M, Hitt MA, Lane PJ (2010) Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strateg Manag J 31(6):602–628

    Google Scholar 

  • Milgrom P, Roberts J (1995) Complementarities and fit strategy, structure, and organizational change in manufacturing. J Account & Econ 19(23):179–208

    Article  Google Scholar 

  • Morris S, Baliga S (2002) Co-ordination, spillovers, and cheap talk. J Econ Theory 105(2):450–468

    Article  Google Scholar 

  • Morris S, Shin HS (2011) Global games: theory and applications. Cowles Founda Disc Paper N0:1275R

    Google Scholar 

  • Myatt DP, Wallace C (2012) Endogenous information acquisition in coordination games. Rev Econ Stud 79:340–374

    Article  Google Scholar 

  • Orsi L, Ganzaroli A, Noni ID, Marelli F (2015) Knowledge utilization drivers in technological M&As. Tech Anal Strateg Manag 27(8):877–894

    Article  Google Scholar 

  • Pablo AL (1994) Determinants of acquisition integration level: a decision-making perspective. Acad Manag J 37(4):803–836

    Article  Google Scholar 

  • Panzar JC, Willig RD (1977) Economies of scale in multi-output production. Q J Econ 91(3):481–493

    Article  Google Scholar 

  • Paruchuri S, Nerkar A, Hambrick DC (2006) Acquisition integration and productivity losses in the technical core: disruption of inventors in acquired companies. Organ Sci 17(5):545–562

    Article  Google Scholar 

  • Puranam P, Srikanth K (2007) What they know vs. what they do: How acquirers leverage technology acquisitions. Strateg Manag J 28(8):805–825

    Article  Google Scholar 

  • Puranam P, Singh H, Zollo M (2006) Organizing for innovation: managing the coordination-autonomy dilemma in technology acquisitions. Acad Manag J 49(2):263–280

    Article  Google Scholar 

  • Reuer JF, Tong TW, Wu CW (2012) A signaling theoty of acquisition premiums: evidence from IPO targets. Academy Manag J 55(3):667–683

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons, New York

    Google Scholar 

  • Scott N, Livingston M, Hart A, Wilson J, Moore D, Dieze P (2016) Simdrink: an agent-based netlogo model of young, heavy drinkers for conducting alcohol policy experiment. J Artif Soc Soc Sim 19(1):10

    Google Scholar 

  • Seth A (1990) Sources of value creation in acquisitions: an empirical investigation. Strateg Manag J 11:431–446

    Article  Google Scholar 

  • Singh H, Montgomery CA (1987) Corporate acquisition strategies and economic performance. Strateg Manag J 8:377–386

    Article  Google Scholar 

  • Stahl GK, Voigt A (2008) Do cultural differences matter in mergers and acquisitions? A tentative model and examination. Organ Sci 19:160–176

    Article  Google Scholar 

  • Wu CW, Reuer JF, Ragozzino R (2014) Insights of signaling theory for acquisitions research. Adv M&As 12:173–191

    Google Scholar 

  • Yamanoi J, Sayama H (2013) Post-merger cultural integration from a social network perspective: a computational modeling approach. Comput Math Organ Theo 19(4):516–537

    Article  Google Scholar 

  • Zaheer A, Castañer X, Souder D (2013) Synergy sources, target autonomy, and integration in acquisitions. J Manag 39(3):604–632

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of key project of the National Social Science Fund (14AJY007), Key Projects of Zhejiang Province Natural Science (LZ14G020002), CRPE China private economy development research (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiqiong Chen.

Appendices

Appendices

1.1 Appendix 1: Proof of Proposition 1

Build the following function:

$${\text{h}}\left( {\tilde{\uptheta }_{\text{A}} } \right) = \tilde{\uptheta }_{\text{A}} - {\text{C}} - {\text{K}} - \uppi^{\text{sA}} {\text{R}}^{\text{A}} + \uppi^{\text{sA}} {\text{R}}^{\text{B}} - \uppi^{\text{sA}} {\text{R}}^{\text{B}} \Phi \left\{ {\upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{A}} - {\text{y}}} \right) - \sqrt {1 + \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)}}} \right]} \right\}$$

Differentiate with respect to \(\tilde{\uptheta }_{\text{A}}\):

$$\frac{{\partial {\text{h}}\left( {\tilde{\uptheta }_{\text{A}} } \right)}}{{\partial \tilde{\uptheta }_{\text{A}} }} = 1 - \uppi^{\text{sA}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset ({\text{z}}1)$$
(29)

where \({\text{z}}1 = \upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{A}} - {\text{y}}} \right) - \sqrt {1\,+\, \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}}\,+\,\upkappa \upvarphi \,-\, {\text{d}}\uptau } \right)}}} \right], \, \emptyset\) is pdf of normal distribution. \(\emptyset \left( {{\text{z}}1} \right) \le \frac{1}{{\sqrt {2\uppi } }}\), when \(\uppi^{\text{sA}} {\text{R}}^{\text{B}} < \frac{{\sqrt {2\upbeta \uppi } }}{\upalpha }\), we have \(\frac{{\partial {\text{h}}\left( {\tilde{\uptheta }_{\text{A}} } \right)}}{{\partial \tilde{\uptheta }_{\text{A}} }} > 0\), which means unique solution exists. Similarly,

$$\begin{aligned} {\text{g}}\left( {\tilde{\uptheta }_{\text{B}} } \right) & = \tilde{\uptheta }_{\text{B}} + {\text{K}} - \uppi^{\text{sB}} {\text{R}}^{\text{B}} \Phi \left\{ {\upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{B}} - {\text{y}}} \right) - \sqrt {1 + \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)}}} \right]} \right\} \\ {\text{z}}11 & = \upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{B}} - {\text{y}}} \right) - \sqrt {1 + \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)}}} \right] \\ \frac{{\partial {\text{g}}\left( {\tilde{\uptheta }_{\text{B}} } \right)}}{{\partial \tilde{\uptheta }_{\text{B}} }} & = 1 - \uppi^{\text{sB}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset ({\text{z}}11) \\ \end{aligned}$$
(30)

When \(\uppi^{\text{sB}} {\text{R}}^{\text{B}} < \frac{{\sqrt {2\upbeta \uppi } }}{\upalpha }\), we have \(\frac{{\partial {\text{g}}\left( {\tilde{\uptheta }_{\text{B}} } \right)}}{{\partial \tilde{\uptheta }_{\text{B}} }} > 0\). To sum up, when \(\uppi^{\text{sA}} {\text{R}}^{\text{B}} < \frac{{\sqrt {2\upbeta \uppi } }}{\upalpha }\), both companies have unique equilibrium.

$$\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{\partial \upkappa } = - \frac{{\uppi^{\text{sA}} {\text{R}}^{\text{B}} \emptyset \left( {{\text{z}}1} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{{\text{Vd}}\upvarphi }}{{\left[ {{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)} \right]^{2} }}}}{{1 - \uppi^{\text{sA}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset \left( {{\text{z}}1} \right)}}$$
(31)

where \({\text{z}}2 = 1 - \frac{\text{V}}{{{\text{d}}({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )}}\), \(\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{\partial \upkappa } < 0\)

$$\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{{\partial {\text{d}}}} = - \frac{{\uppi^{\text{sA}} {\text{R}}^{\text{B}} \emptyset \left( {{\text{z}}1} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{{\text{V}}({\text{V}} + \upkappa \upvarphi - 2{\text{d}}\uptau )}}{{\left[ {{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)} \right]^{2} }}}}{{1 - \uppi^{\text{sA}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset \left( {{\text{z}}1} \right)}}$$
(32)

V + κφ − 2dτ < 0 when \(\uppi^{\text{sA}} {\text{R}}^{\text{B}} < \frac{{\sqrt {2\upbeta \uppi } }}{\upalpha }\), \(\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{{\partial {\text{d}}}} > 0\).

$$\tilde{\Theta }_{\text{B}} = - {\rm K} + \uppi^{\text{sB}} {\text{R}}^{\text{B}} \Phi \left\{ {\upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{B}} - {\text{y}}} \right) - \sqrt {1 + \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)}}} \right]} \right\}$$
$$\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{\partial \upkappa } = - \frac{{\uppi^{\text{sB}} {\text{R}}^{\text{B}} \emptyset \left( {{\text{z}}11} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}22} \right)} \right]}}\frac{{ - {\text{Vd}}\updelta }}{{\left[ {{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)} \right]^{2} }}}}{{1 - \uppi^{\text{sB}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset \left( {{\text{z}}11} \right)}}$$
(33)
$${\text{z}}11 = \upalpha \sqrt {\frac{1}{\upbeta }} \left( {\tilde{\uptheta }_{\text{B}} - {\text{y}}} \right) - \sqrt {1 + \frac{\upalpha }{\upbeta }} \Phi^{ - 1} \left[ {1 - \frac{\text{V}}{{{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)}}} \right],\quad {\text{z}}22 = 1 - \frac{\text{V}}{{{\text{d}}({\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau )}}$$
$$\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial {\text{d}}}} = - \frac{{\uppi^{\text{sB}} {\text{R}}^{\text{B}} \emptyset \left( {{\text{z}}11} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}22} \right)} \right]}}\frac{{{\text{V}}[{\text{V}} - \upkappa \updelta + 2\left( {{\text{M}} - {\text{d}}} \right)\uptau ]}}{{\left[ {{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)} \right]^{2} }}}}{{1 - \uppi^{\text{sB}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset \left( {{\text{z}}11} \right)}}$$
(34)

Thus \(\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{\partial \upkappa } > 0.{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau > \frac{\text{V}}{\text{d}} > 0\), M > d, V − κδ + 2(M − d)τ > 0. \(\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial {\text{d}}}} < 0\).

1.2 Appendix 2: Proof of Proposition 2

$$\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{\partial \upkappa } = - \frac{{\uppi^{\text{sA}} {\text{R}}^{\text{B}} \emptyset \left( {{\text{z}}1} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{{\text{Vd}}\upvarphi }}{{\left[ {{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)} \right]^{2} }}}}{{1 - \uppi^{\text{sA}} {\text{R}}^{\text{B}} \frac{\upalpha }{\sqrt \upbeta }\emptyset \left( {{\text{z}}1} \right)}}$$

where \(\frac{{\partial {\text{z}}2}}{\partial \upkappa } = \frac{{{\text{V}}\upvarphi }}{{{\text{d}}({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )^{2} }} > 0\), \(\frac{{\partial {\text{z}}2}}{{\partial {\text{d}}}} = \frac{{{\text{V}}({\text{V}} + \upkappa \upvarphi - 2{\text{d}}\uptau )}}{{[{\text{d}}({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )]^{2} }} < 0\), \(\frac{{\partial {\text{z}}1}}{{\partial {\text{d}}}} = \upalpha \sqrt {\frac{1}{\upbeta }} \frac{{\partial \tilde{\uptheta }_{\text{A}} }}{{\partial {\text{d}}}} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial {\text{z}}2}}{{\partial {\text{d}}}} > 0\),

$$\begin{aligned} \frac{{\partial \tilde{\uptheta }_{{\text{A}}} }}{{\partial \upkappa \partial {\text{d}}}} &= - \left\{ {\left\{ {\uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}1} \right)\frac{{\partial {\text{z}}1}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial {\text{z}}2}}{{\partial \upkappa }}} \right.} \right. \hfill \\ & \quad + \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset \left( {{\text{z}}1} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \left[ { - \frac{1}{{\left\{ {\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]} \right\}^{2} }}} \right]\emptyset ^{'} \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]\frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial {\text{z}}2}}{{\partial {\text{d}}}}\frac{{\partial {\text{z}}2}}{{\partial \upkappa }} \hfill \\ & \left. {\quad +\, \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset \left( {{\text{z}}1} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial \left( {\frac{{\partial {\text{z}}2}}{{\partial \upkappa }}} \right)}}{{\partial {\text{d}}}}} \right\}{\text{v}} \hfill \\ & {{\left. {\quad - u\left( { - \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}1} \right)\frac{{\partial {\text{z}}1}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} } \right)} \right\}} \mathord{\left/ {\vphantom {{\left. {\quad - u\left( { - \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}1} \right)\frac{{\partial {\text{z}}1}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} } \right)} \right\}} {{\text{v}}^{2} }}} \right. \kern-\nulldelimiterspace} {{\text{v}}^{2} }} \hfill \\ \end{aligned}$$
(35)

When y is larger enough, z1 < 0, \(\emptyset^{'} \left( {z1} \right) > 0\). \({\text{z}}2 \in (0,0.5)\), Φ−1(z2) < 0, θ−1(z2)] > 0.

$${\frac{{\partial \left( {\frac{{\partial {\text{z}}2}}{\partial \upkappa }} \right)}}{{\partial {\text{d}}}} = - \frac{{{\text{V}}\upvarphi [({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )^{2} - 2{\text{d}}\uptau \left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)]}}{{[{\text{d}}({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )]^{2} }} = - \frac{{{\text{V}}\upvarphi [\left( {{\text{V}} + \upkappa \upvarphi - 3{\text{d}}\uptau } \right)]}}{{{\text{d}}^{2} ({\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau )^{3} }} > 0,\; \frac{{\partial \tilde{\uptheta }_{\text{A}} }}{{\partial \upkappa \partial {\text{d}}}} < 0.}$$
$$\frac{{\partial {\text{z}}22}}{\partial \upkappa } = \frac{{ - {\text{V}}\updelta }}{{{\text{d}}({\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau )^{2} }} < 0,\;\frac{{\partial {\text{z}}22}}{{\partial {\text{d}}}} > 0,\;\frac{{\partial {\text{z}}11}}{{\partial {\text{d}}}} = \upalpha \sqrt {\frac{1}{\upbeta }} \frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial {\text{d}}}} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial {\text{z}}22}}{{\partial {\text{d}}}} < 0.$$
$$\begin{aligned} \frac{{\partial \tilde{\uptheta }_{{\text{B}}} }}{{\partial \upkappa \partial {\text{d}}}} & = - \left\{ {\left\{ {\uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}11} \right)\frac{{\partial {\text{z}}11}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial {\text{z}}22}}{{\partial \upkappa }}~} \right.} \right. \hfill \\ & \quad + \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset \left( {{\text{z}}11} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \left[ { - \frac{1}{{\left\{ {\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]} \right\}^{2} }}} \right] \times \emptyset ^{'} \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]\frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial {\text{z}}22}}{{\partial {\text{d}}}}\frac{{\partial {\text{z}}22}}{{\partial \upkappa }} \hfill \\ & \quad \left. { +\, \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset \left( {{\text{z}}11} \right)\sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial \left( {\frac{{\partial {\text{z}}22}}{{\partial \upkappa }}} \right)}}{{\partial {\text{d}}}}} \right\}{\text{v}} \hfill \\ & {{\left. {\quad -\, {\text{u}}\left( { - \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}11} \right)\frac{{\partial {\text{z}}11}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} } \right)} \right\}} \mathord{\left/ {\vphantom {{\left. {\quad - {\text{u}}\left( { - \uppi ^{{{\text{sA}}}} {\text{R}}^{{\text{B}}} \emptyset ^{'} \left( {{\text{z}}11} \right)\frac{{\partial {\text{z}}11}}{{\partial {\text{d}}}}\sqrt {1 + \frac{\upalpha }{\upbeta }} } \right)} \right\}} {{\text{v}}^{2} }}} \right. \kern-\nulldelimiterspace} {{\text{v}}^{2}}}\end{aligned}$$
(36)

z11 < 0, θ′(z11) > 0. z22 ∈ (0, 0.5), Φ−1(z22) < 0, θ′[Φ−1(z22)] > 0. \(\frac{{\partial \left( {\frac{{\partial {\text{z}}22}}{\partial \upkappa }} \right)}}{{\partial {\text{d}}}} = - \frac{{{\text{V}}\updelta [\left( {{\text{V}} - \upkappa \upvarphi - 3{\text{d}}\uptau + 3{\text{M}}\uptau } \right)]}}{{{\text{d}}^{2} ({\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau )^{3} }} > 0. \quad \frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial \upkappa \partial {\text{d}}}} < 0.\)

1.3 Appendix 3: Proof of Lemma 1

$$\frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{\partial k} = - \emptyset \left( {{\text{z}}1} \right)\left\{ {\frac{\upalpha + \upbeta }{\sqrt \upbeta }\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{\partial \upkappa } - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{{\text{Vd}}\upvarphi }}{{\left[ {{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)} \right]^{2} }}} \right\}$$
(37)

The first one in the braces is negative. The second one is positive, and \(\frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{k}}}} > 0\).

$$\frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{d}}}} = - \emptyset \left( {{\text{z}}1} \right)\left\{ {\frac{\upalpha + \upbeta }{\sqrt \upbeta }\frac{{\partial \tilde{\uptheta }_{\text{A}} }}{{\partial {\text{d}}}} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}2} \right)} \right]}}\frac{{{\text{V}}({\text{V}} + \upkappa \upvarphi - 2{\text{d}}\uptau )}}{{\left[ {{\text{d}}\left( {{\text{V}} + \upkappa \upvarphi - {\text{d}}\uptau } \right)} \right]^{2} }}} \right\}$$
(38)

The first one in the braces is positive. The second one is negative, and \(\frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{d}}}} < 0\).

1.4 Appendix 4: Proof of Proposition 3

$$\frac{{\partial {\text{I}}}}{\partial \uptheta } = \frac{{\partial \left( {\mathop \smallint \nolimits_{0}^{{\uptheta_{\text{A}} }} \uplambda \left( {\uptheta_{\text{A}} } \right){\text{d}}\uptheta_{\text{A}} } \right)}}{{\partial \uptheta_{\text{A}} }} = \uplambda \left( {\uptheta_{\text{A}} } \right)$$
(39)
$$\frac{{\partial {\text{I}}}}{\partial \upkappa } = \frac{{\partial \left( {\frac{{\partial {\text{I}}}}{\partial \uptheta }} \right)}}{\partial \upkappa } = \frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{k}}}} > 0,\;\frac{{\partial {\text{I}}}}{{\partial {\text{d}}}} = \frac{{\partial \left( {\frac{{\partial {\text{I}}}}{\partial \uptheta }} \right)}}{{\partial {\text{d}}}} = \frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{d}}}} < 0.$$

1.5 Appendix 5: Proof of Proposition 4

$$\frac{{\partial {\text{w}}\left( {\uptheta_{\text{B}} } \right)}}{{\partial {\text{k}}}} = - \emptyset \left( {{\text{z}}11} \right)\left\{ {\frac{\upalpha + \upbeta }{\sqrt \upbeta }\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{\partial \upkappa } - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}22} \right)} \right]}}\frac{{ - V{\text{d}}\updelta }}{{\left[ {{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)} \right]^{2} }}} \right\}$$
(40)

\(\frac{{\partial {\text{w}}\left( {\uptheta_{\text{B}} } \right)}}{{\partial {\text{k}}}} < 0\). Because \(\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{\partial \upkappa } > 0\)

$$\frac{{\partial {\text{w}}\left( {\uptheta_{\text{B}} } \right)}}{{\partial {\text{d}}}} = - \emptyset \left( {{\text{z}}11} \right)\left\{ {\frac{\upalpha + \upbeta }{\sqrt \upbeta }\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial {\text{d}}}} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi^{ - 1} \left( {{\text{z}}22} \right)} \right]}}\frac{{{\text{V}}({\text{V}} - \upkappa \updelta - 2{\text{d}}\uptau + 2{\text{M}}\uptau )}}{{\left[ {{\text{d}}\left( {{\text{V}} - \upkappa \updelta - {\text{d}}\uptau + {\text{M}}\uptau } \right)} \right]^{2} }}} \right\}$$
(41)

V − κδ + 2(M – d)τ > 0, \(\frac{{\partial \tilde{\uptheta }_{\text{B}} }}{{\partial {\text{d}}}} < 0\), so \(\frac{{\partial {\text{w}}\left( {\uptheta_{\text{B}} } \right)}}{{\partial {\text{d}}}} > 0\).

1.6 Appendix 6: Proof of Proposition 5

$$\begin{aligned} \frac{{\partial \uplambda \left( {\uptheta _{{\text{A}}} } \right)}}{{\partial {\text{k}}\partial {\text{d}}}} &= - \emptyset ^{'} \left( {{\text{z}}1} \right)\frac{{\partial {\text{z}}1}}{{\partial {\text{d}}}}\left\{ {\frac{{\upalpha + \upbeta }}{{\sqrt \upbeta }}\frac{{\partial \tilde{\uptheta }_{{\text{A}}} }}{{\partial \upkappa }} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial {\text{z}}2}}{{\partial \upkappa }}} \right\} \hfill \\ & \quad - \emptyset \left( {z1} \right)\left\{ {\frac{{\upalpha + \upbeta }}{{\sqrt \upbeta }}\frac{{\partial \tilde{\uptheta }_{{\text{A}}} }}{{\partial \upkappa \partial {\text{d}}}}} \right. \hfill \\ & \quad - \sqrt {1 + \frac{\upalpha }{\upbeta }} \left[ { - \frac{1}{{\left\{ {\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]} \right\}^{2} }}} \right]\emptyset ^{'} \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]\frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial {\text{z}}2}}{{\partial {\text{d}}}}\frac{{\partial {\text{z}}2}}{{\partial \upkappa }} \hfill \\ & \left. {\quad - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}2} \right)} \right]}}\frac{{\partial \left( {\frac{{\partial {\text{z}}2}}{{\partial \upkappa }}} \right)}}{{\partial {\text{d}}}}} \right\} \end{aligned}$$
(42)

\(\frac{{\partial \uplambda \left( {\uptheta_{\text{A}} } \right)}}{{\partial {\text{k}}\partial {\text{d}}}} > 0\),

$$\begin{aligned} \frac{{\partial {\text{w}}\left( {\uptheta _{{\text{B}}} } \right)}}{{\partial {\text{k}}\partial {\text{d}}}} &= - \emptyset ^{\prime } \left( {{\text{z}}11} \right)\frac{{\partial {\text{z}}11}}{{\partial {\text{d}}}}\left\{ {\frac{{\upalpha + \upbeta }}{{\sqrt \upbeta }}\frac{{\partial \tilde{\uptheta }_{{\text{B}}} }}{{\partial \upkappa }} - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial {\text{z}}22}}{{\partial \upkappa }}} \right\} \hfill \\ & \quad - \emptyset \left( {{\text{z}}11} \right)\left\{ {\frac{{\upalpha + \upbeta }}{{\sqrt \upbeta }}\frac{{\partial \tilde{\uptheta }_{{\text{B}}} }}{{\partial \upkappa \partial d}}} \right. \hfill \\ & \quad - \sqrt {1 + \frac{\upalpha }{\upbeta }} \left[ { - \frac{1}{{\left\{ {\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]} \right\}^{2} }}} \right]\emptyset ^{\prime } \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]\frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial {\text{z}}22}}{{\partial {\text{d}}}}\frac{{\partial {\text{z}}22}}{{\partial \upkappa }} \hfill \\ & \left. {\quad - \sqrt {1 + \frac{\upalpha }{\upbeta }} \frac{1}{{\emptyset \left[ {\Phi ^{{ - 1}} \left( {{\text{z}}22} \right)} \right]}}\frac{{\partial \left( {\frac{{\partial {\text{z}}22}}{{\partial \upkappa }}} \right)}}{{\partial {\text{d}}}}} \right\} \end{aligned}$$
(43)

\(\frac{{\partial {\text{w}}\left( {\uptheta_{\text{B}} } \right)}}{{\partial {\text{k}}\partial {\text{d}}}} > 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Meng, Q. & Li, F. How resource information backgrounds trigger post-merger integration and technology innovation? A dynamic analysis of resource similarity and complementarity. Comput Math Organ Theory 23, 167–198 (2017). https://doi.org/10.1007/s10588-016-9222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-016-9222-4

Keywords

Navigation