Skip to main content
Log in

Performance analysis of optical interconnects’ architectures for data center networks

Do you have a subtitle? If so, write it here

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Electrical interconnects in Data Center Networks (DCNs) suffer from various problems which include high energy consumption, high latency, fixed throughput of links and limited reconfigurability. Introducing optical interconnects in DCNs help to reduce these problems to a large extent. Optical interconnects are the technology of the future. To implement optical switching in DCNs various optical components are used which include wavelength selective switch, tunable wavelength converter, arrayed waveguide grating, semiconductor optical amplifier based switch, wavelength division multiplexers and demultiplexers. All these optical components vary the shape, attenuate the optical signal and introduce time delay in bits. A comprehensive study of various architectures for optical interconnects in data center networks (DCN) is carried out. Performance of various architectures is investigated in terms of jitter, bit error rate (BER), receiver sensitivity and eye diagram opening. It is also investigated how different optical components used in optical interconnects in DCNs are effecting the signal degradation in different architectures. The paper concludes with the categorization of the signal degradation types in optical interconnects in DCNs and ways to reduce them. This enables the design of low BER optical interconnects in DCNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73

Similar content being viewed by others

References

  1. Rana, F.: Lecture Notes, Cornell University. https://courses.cit.cornell.edu/ece533/Lectures/handout9, Accessed on 15 Mar 2014

  2. Giuliani, G., DAlessandro, D.: Noise analysis of conventional and gain-clamped semiconductor optical amplifiers. J. Lightwave Technol. 18(9), 1256–1263 (2000)

  3. Leijtens, X.J.M., Kuhlow, B., Smith, M.K.: Arrayed waveguide grating. In: Venghaus, H. (ed.) Wavelength Filters in Fiber Optics, pp. 125–187. Springer, Berlin (2006)

    Chapter  Google Scholar 

  4. http://www.fiberoptics4sale.com/wordpress/what-is-wavelength-selective-switchwss/, Accessed on 17 June 2015

  5. Othonos, A., Kalli, K., Pureur, D., Mugnier, A.: Fibre bragg gratings. In: Venghaus, H. (ed.) Wavelength Filters in Fibre Optics, pp. 189–269. Springer, Berlin (2006)

    Chapter  Google Scholar 

  6. Takahashi, K., Kanamori, Y., Kokubun, Y., Hane, K.: A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator. Opt. Express 16(19), 14421–14428 (2008). doi:10.1364/OE.16.014421

    Article  Google Scholar 

  7. Lee, S.-S., Huang, L.-S., Kim, C.-J., Wu, M.C.: Free-space fiber-optic switches based on MEMS vertical torsion mirrors. J. Lightwave Technol. 17(1), 7–13 (1999). doi:10.1109/50.737414

    Article  Google Scholar 

  8. Faraday’s effect, https://en.wikipedia.org/wiki/Faraday_effect, Accessed on 2 Apr 2014

  9. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. Commun. Surv. Tutor. 14(4), 1021–1036 (2012). doi:10.1109/SURV.2011.122111.00069

    Article  Google Scholar 

  10. Kachris, C., Tomkos, I.: Power consumption evaluation of all-optical data center networks. Cluster Comput. 16(3), 611–623 (2013). doi:10.1007/s10586-012-0227-6

    Article  Google Scholar 

  11. http://optiwave.com/category/products/system-and-amplifier-design/optisystem/, Accessed on 10 July 2014

  12. Mitchellab, P., Longonea, R., Janssena, A., Garretta, B., Luob, J.K.: Evaluation of an InP Mach-Zehnder modulator for high speed optical network system architectures and emerging photonically integrated optical Modules. J. Optoelectron. Adv. Mater. 12(5), 965–975 (2010)

    Google Scholar 

  13. https://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E, Accessed on 17 June 2015

  14. http://standards.ieee.org/about/get/802/802.3.html, Accessed on 17 June 2015

  15. http://www.cisco.com/web/partners/pr67/intel/docs/C67-575047-00_10GBase-T_QA_v2a.pdf, Accessed on 5 June 2014

  16. http://www.ti.com/lit/an/slyt179/slyt179.pdf, Accessed on 14 Apr 2014

  17. Miller, C.M.: High Speed Digital Transmitter characterization using eye diagram. Hewlett Packard J. 3, aug94a3 (August 1994)

  18. Singla, A., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Proteus: A topology Malleable Data Center Network. In: Hotnets-IX Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Article No: 8 (2010). doi:10.1145/1868447.1868455

  19. Ye, X., Yin, Y., Yoo, S.J.B., Mejia, P., Proietti, R., Akella, V.: DOS: a scalable optical switch for datacenters. In: ANCS ’10 ACM/IEEE Symposium on Architectures for Networking and Communications Systems, Article No: 24 (2010). doi:10.1145/1872007.1872037

  20. Xia, K., Ka, Y.-H., Yang, M., Jonathan Chao, H.: Petabit a petabit bufferless optical switch for data center networks. In: Xia, K., Mitchellab, Y.-H., Longonea, R., Janssena, A., Garretta, B., Luob.ang Kao, J. K., Yang, M., Jonathan Chao, H. (eds.) Petabit Optical Switch for Data Center Networks. Optical Interconnects for Future Data Center Networks, pp. 135–154 (2013) http://eeweb.poly.edu/chao/publications/petasw. Accessed on 14 Apr 2014

  21. Kodi, A.K., Louri, A.: Energy efficient and bandwidth reconfigurable photonic networks for high performance computing systems. IEEE J. Sel. Top. Quantum Electron. 17(2), 384–395 (2011). doi:10.1109/JSTQE.2010.2051419

  22. Di Lucente, S., Centelles, R.P., Dorren, H.J.S., Calabretta, N.: Study of the performance of an optical packet switch architecture with highly distributed control in data center environment. In: IEEE 16th International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6 (2012). doi:10.1109/ONDM.2012.6210266

  23. Ji, P.N., Qian, D., Kanonakis, K., Kachris, C., Tomkos, I.: Design and Evaluation of a flexible bandwidth OFDM Intra Data Center Interconnect. IEEE J. Sel. Top. Quantum Electron. 19(2), Article 3700310 (2013). doi:10.1109/JSTQE.2012.2209409

  24. Liboiron, O., Isabella, C., Giorgio, R.P., Nicola, A., Piero, C.: Energy Efficient Design of Scalable Optical Multi plane Interconnection Architecture. IEEE J. Sel. Top. Quantum Electron. 17(2), 377–383 (2011). doi:10.1109/JSTQE.2010.2049733

  25. Farrington, N., Farrington, N., Forencich, A., en Sun, P.-C., Fainman, S., Ford, J., Vahdat, A., Porter, G., Papen, G.: A ten microsecond hybrid optical/circuit electrical packet network for datacenters. In: OFC/NFOEC, Anaheim, CA (March 2013)

  26. Gripp, J., Simsarian, J.E., LeGrange, J.D., Bernasconi, P., Neilson, D.T.: Photonic Terabit Routers: The IRIS Project. Optical Fiber Communication (OFC). In: IEEE Conference on Optical Fiber Communication (OFC), Collocated National Fiber Op-tic Engineers Conference, pp. 1–3 (2010)

  27. Corzo, N.V., Marino, A.M., Jones, K.M., Let, P.D.: Noiseless optical amplifier operating on hundreds of spatial modes. Phys. Rev. Lett. Prl. 109, 043602 (2012)

  28. Ruiz-Moreno, S., Junyent, G., Soneira, M.J., Usandizaga, J.R.: Statistical analysis of nonlinear optical amplifier in high saturation. In: IEE PROCEEDINGS, Vol. 135, Pt. J, Number 1 (1988)

  29. Karar, A.S., Jiang, Y., Cartledge, J.C., Harley, J., Krause, D.J., Roberts, K.: Electronic Precompensation of the Nonlinear Distortion in a 10 Gb/s 4-ary ASK Directly Modulated Laser. ECOC (2010)

  30. Lu, X., Xu, T., Liu, T., Ying1, X., Ye1, Y., Sun, Y., Zhang, X.: Reduction of Intermodulation Distortion in Directly Modulated Lasers RF Predistortion, Electronics. In: International Conference on Communications and Control (ICECC), pp 4437–4439 (2011). doi:10.1109/ICECC.2011.6066735

  31. Rylyakov, A.V., Schow, C.L., Lee, B.G., Doany, F.E., Baks, C., Kash, J.A.: Transmitter Predistortion for Simultaneous Improvements in Bit Rate. Sensitivity, Jitter, and Power Efficiency in 20 Gb/s CMOS-Driven VCSEL Links. J. Loghtwave Technol. (2012). doi:10.1109/JLT.2011.2171917

  32. Grigoryan, V.S., Menyuk, C.R., Mu, R.-M.: Calculation of timing and amplitude jitter in dispersion-managed optical fiber communications using linearization. J. Lightwave Technol. 17(8), 1347 (1999)

  33. Carusone, A.C.: An equalizer adaptation algorithm to reduce jitter in binary receivers. IEEE Trans. Circ. SustemsII: Express Briefs, 53(9), 8-7-811 (2006). doi:10.1109/TCSII.2006.881161

  34. Qin, X., Wang, M., Cao, J., Zhang, F., Lv, B., Lu, D., Chen, M., Jian, S.: Timing jitter induced by intrachannel interactions in optical fiber communication systems using CFG as dispersion compensator. Opt. Commun. 279, 203–209 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Fayyaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, M., Aziz, K. & Mujtaba, G. Performance analysis of optical interconnects’ architectures for data center networks. Cluster Comput 19, 1139–1161 (2016). https://doi.org/10.1007/s10586-016-0592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0592-7

Keywords

Navigation