Skip to main content
Log in

Cancer microenvironment and genomics: evolution in process

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MBM:

Brain metastasis

ANGPTL4:

Angiopoietin-like 4

CysC:

Cystatin C

CLDN1:

Claudin-1

DTCs:

Disseminated tumor cells

ECM:

Extracellular matrix

MM:

Malignant melanoma

bHLH:

Helix-loop-helix

CPI:

Checkpoint inhibitors

IO:

Immunoncology

TAMPP:

T-cell activation marker proficiency panel

ROI:

Regions of interest

CNN:

Convolutional neural networks

BC:

Breast cancer

AA:

African American

EA:

White or European American

TNBC:

Triple-negative BC

ICSBCS:

International Center for the Study of Breast Cancer Subtypes

TST:

Trans-Atlantic Slave Trade

DARC/ACKR1 :

Duffy Antigen Receptor for Chemokines/Atypical Chemokine Receptor 1 gene

IMC:

Imaging mass cytometry

RNA-Seq:

RNA sequencing

GTEx:

Genotype-Tissue Expression database

Treehouse CARE:

Treehouse Comparative Analysis of RNA Expression

CRISPR/Cas9:

Clustered Regularly-Interspaced Short Palindromic Repeats

References

  1. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    CAS  PubMed  Google Scholar 

  2. Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  3. Leong SP, Aktipis A, Maley C (2018) Cancer initiation and progression within the cancer microenvironment. Clin Exp Metastasis 35(5–6):361–367

    PubMed  Google Scholar 

  4. Boire A et al (2020) Brain metastasis. Nat Rev Cancer 20(1):4–11

    CAS  PubMed  Google Scholar 

  5. Orozco JIJ et al (2018) Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun 9(1):4627

    PubMed  PubMed Central  Google Scholar 

  6. Valiente M et al (2018) The evolving landscape of brain metastasis. Trends Cancer 4(3):176–196

    PubMed  PubMed Central  Google Scholar 

  7. Winkler F (2015) The brain metastatic niche. J Mol Med (Berl) 93(11):1213–1220

    CAS  Google Scholar 

  8. Izraely S, Klein A, Sagi-Assif O, Meshel T, Tsarfaty G, Hoon DSB, Witz IP (2010) The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer 130(1–2):107–114. https://doi.org/10.1016/j.imlet.2009.12.003

  9. Neuditschko B et al (2020) The challenge of classifying metastatic cell properties by molecular profiling exemplified with cutaneous melanoma cells and their cerebral metastasis from patient derived mouse xenografts. Mol Cell Proteomics 19(3):478–489

    PubMed  Google Scholar 

  10. Izraely S, Witz IP (2021) Site-specific metastasis: a cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 148(6):1308–1322. https://doi.org/10.1002/ijc.33247

    CAS  PubMed  Google Scholar 

  11. Izraely S et al (2017) ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget 8(44):75778–75796

    PubMed  PubMed Central  Google Scholar 

  12. Tan MJ et al (2012) Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res 10(6):677–688

    CAS  PubMed  Google Scholar 

  13. Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    CAS  PubMed  Google Scholar 

  14. Izraely S, Klein A, Sagi-Assif O, Meshel T, Tsarfaty G, Hoon DSB, Witz IP (2010) Chemokine–chemokine receptor axes in melanoma brain metastasis. Immunol Lett 130(1–2):107–114. https://doi.org/10.1016/j.imlet.2009.12.003

    CAS  PubMed  Google Scholar 

  15. Klein A et al (2012) The metastatic microenvironment: brain-derived soluble factors alter the malignant phenotype of cutaneous and brain-metastasizing melanoma cells. Int J Cancer 131(11):2509–2518

    CAS  PubMed  Google Scholar 

  16. Klein A et al (2017) CCR4 is a determinant of melanoma brain metastasis. Oncotarget 8(19):31079–31091

    PubMed  PubMed Central  Google Scholar 

  17. Moshe A et al (2018) Cystatin C takes part in melanoma-microglia cross-talk: possible implications for brain metastasis. Clin Exp Metastasis 35(5–6):369–378

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kopitz C et al (2005) Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Res 65(19):8608–8612

    CAS  PubMed  Google Scholar 

  19. Huh CG et al (1999) Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol Pathol 52(6):332–340

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein A et al (2015) Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol 236(1):116–127

    CAS  PubMed  Google Scholar 

  21. Langowski JL et al (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465

    CAS  PubMed  Google Scholar 

  22. Moshe A, Izraely S, Sagi-Assif O, Malka S, Ben-Menachem S, Meshel T, Pasmanik-Chor M, Hoon DSB, Witz IP, (2020) Inter-tumor heterogeneity—melanomas respond differently to GM-CSF-mediated activation. Cells 9(7):1683. https://doi.org/10.3390/cells9071683

  23. Hoeller C et al (2016) Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 65(9):1015–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang YC et al (2018) Roles of aldolase family genes in human cancers and diseases. Trends Endocrinol Metab 29(8):549–559

    CAS  PubMed  Google Scholar 

  25. Ramos RI et al (2020) Upregulation of cell surface GD3 ganglioside phenotype is associated with human melanoma brain metastasis. Mol Oncol 14(8):1760–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhat AA et al (2020) Claudin-1, a double-edged sword in cancer. Int J Mol Sci 21(2):569

    CAS  PubMed Central  Google Scholar 

  27. Izraely S et al (2015) The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis. Int J Cancer 136(6):1296–1307

    CAS  PubMed  Google Scholar 

  28. Stebbing J, Filipovic A, Giamas G (2013) Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene 32(41):4871–4872

    CAS  PubMed  Google Scholar 

  29. Almad A, Maragakis NJ (2018) A stocked toolbox for understanding the role of astrocytes in disease. Nat Rev Neurol 14(6):351–362

    PubMed  Google Scholar 

  30. Fidler IJ et al (2010) The brain microenvironment and cancer metastasis. Mol Cells 30(2):93–98

    CAS  PubMed  Google Scholar 

  31. Eyo UB, Wu LJ (2019) Microglia: lifelong patrolling immune cells of the brain. Prog Neurobiol 179:101614

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Izraely S et al (2019) The metastatic microenvironment: melanoma-microglia cross-talk promotes the malignant phenotype of melanoma cells. Int J Cancer 144(4):802–817

    CAS  PubMed  Google Scholar 

  33. Ohab JJ et al (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Prakash R et al (2019) Regeneration enhances metastasis: a novel role for neurovascular signaling in promoting melanoma brain metastasis. Front Neurosci 13:297

    PubMed  PubMed Central  Google Scholar 

  35. Sleeman JP et al (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22(3):174–186

    CAS  PubMed  Google Scholar 

  36. Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31(3–4):429–440

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bethan Psaila DL (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–292

    PubMed  PubMed Central  Google Scholar 

  38. Celia-Terrassa T, Kang Y (2018) Metastatic niche functions and therapeutic opportunities. Nat Cell Biol 20(8):868–877

    CAS  PubMed  Google Scholar 

  39. Hoye AM, Erler JT (2016) Structural ECM components in the premetastatic and metastatic niche. Am J Physiol Cell Physiol 310(11):C955–C967

    PubMed  Google Scholar 

  40. Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ, Yang J (2015) Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat Cell Biol 17(5):678–688. https://doi.org/10.1038/ncb3157

  42. Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103(29):10889–10894. https://doi.org/10.1073/pnas.0604460103

  43. Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Malanchi I et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    PubMed  Google Scholar 

  45. Oskarsson T et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Savoia P et al (2009) Skin metastases of malignant melanoma: a clinical and prognostic survey. Melanoma Res 19(5):321–326

    PubMed  Google Scholar 

  48. Sedlmeier G, Al-Rawi V, Buchert J, Yserentant K, Rothley M, Steshina A, Gräßle S, Wu RL, Hurrle T, Richer W, Decraene C, Thiele W, Utikal J, Abuillan W, Tanaka M, Herten DP, Hill CS, Garvalov BK, Jung N, Bräse S, Sleeman JP (2020) Id1 and Id3 are regulated through matrix-assisted autocrine BMP signaling and represent therapeutic targets in melanoma. Adv Ther 4(2):2000065. https://doi.org/10.1002/adtp.202000065

  49. Hollnagel A et al (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274(28):19838–19845

    CAS  PubMed  Google Scholar 

  50. Liang YY, Brunicardi FC, Lin X (2009) Smad3 mediates immediate early induction of Id1 by TGF-beta. Cell Res 19(1):140–148

    CAS  PubMed  Google Scholar 

  51. Sun X-H, Copeland NG, Jenkins NA, Baltimore D (1991) Id proteins Idl and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11(11):5603–5611. https://doi.org/10.1128/MCB.11.11.5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Brogi E, Gerald WL, Benezra R, Massague J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci USA 104(49):19506–19511. https://doi.org/10.1073/pnas.0709185104

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lai X et al (2014) Inhibitor of DNA-binding protein 1 knockdown arrests the growth of colorectal cancer cells and suppresses hepatic metastasis in vivo. Oncol Rep 32(1):79–88

    CAS  PubMed  Google Scholar 

  54. O’Brien CA et al (2012) ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21(6):777–792

    PubMed  Google Scholar 

  55. Roschger C, Cabrele C (2017) The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 15(1):7

    PubMed  PubMed Central  Google Scholar 

  56. Straume O, Akslen LA (2005) Strong expression of ID1 protein is associated with decreased survival, increased expression of ephrin-A1/EPHA2, and reduced thrombospondin-1 in malignant melanoma. Br J Cancer 93(8):933–938

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pan L, Sato S, Frederick JP, Sun X-H, Zhuang Y (1999) Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol Cell Biol 19(9):5969–5980. https://doi.org/10.1128/MCB.19.9.5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Darvin P et al (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11

    PubMed  Google Scholar 

  59. Wolchok JD et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    PubMed  Google Scholar 

  61. Wei SC et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120–1133 e17

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    CAS  PubMed  Google Scholar 

  63. Pagès F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139

    PubMed  Google Scholar 

  64. Mlecnik B et al (2020) Multicenter International Society for immunotherapy of cancer study of the consensus immunoscore for the prediction of survival and response to chemotherapy in stage III colon cancer. J Clin Oncol 38(31):3638–3651

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Samstein RM et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li K et al (2020) Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int 20:16

    PubMed  PubMed Central  Google Scholar 

  67. Diggs LP, Hsueh EC (2017) Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomark Res 5:12

    PubMed  PubMed Central  Google Scholar 

  68. Taube JM, Akturk G, Angelo M, et al (2020) The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J Immunother Cancer 8:e000155. https://doi.org/10.1136/jitc-2019-000155

  69. Hoyt C et al (2019) Abstract LB-318: Multi-institutional TSA-amplified Multiplexed Immunofluorescence Reproducibility Evaluation (MITRE study): reproducibility assessment of an automated multiplexed immunofluorescence slide staining, imaging, and analysis workflow. Cancer Res 79:LB-LB-318

    Google Scholar 

  70. Pirici D et al (2009) Antibody elution method for multiple immunohistochemistry on primary antibodies raised in the same species and of the same subtype. J Histochem Cytochem 57(6):567–575

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Giesen C et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–425

    CAS  PubMed  Google Scholar 

  72. Toki MI et al (2017) Proof of the quantitative potential of immunofluorescence by mass spectrometry. Lab Investig 97(3):329–334

    CAS  PubMed  Google Scholar 

  73. Goltsev Y et al (2018) Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174(4):968–981 e15

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng Z, Seliger B, Bernard AF (2017) Multiparametric immune profiling in HPV-oral squamous cell cancer. JCI Insight 2(14):e93652. https://doi.org/10.1172/jci.insight.93652

  75. Hum L et al (2021) Cumulative suppressive index as a predictor of relapse free survival and overall survival in Human Papilloma Virus-negative oral squamous cell carcinomas with negative resection margins. Head Neck 43(2):568–576

    PubMed  Google Scholar 

  76. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    CAS  PubMed  Google Scholar 

  77. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Parker JS et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    PubMed  PubMed Central  Google Scholar 

  79. Newman LA (2016) Parsing the etiology of breast cancer disparities. J Clin Oncol 34(9):1013–1014

    CAS  PubMed  Google Scholar 

  80. DeSantis CE et al (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69(6):438–451

    PubMed  Google Scholar 

  81. DeSantis CE et al (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66(1):31–42

    PubMed  Google Scholar 

  82. Allott EH et al (2018) Frequency of breast cancer subtypes among African American women in the AMBER consortium. Breast Cancer Res 20(1):12

    PubMed  PubMed Central  Google Scholar 

  83. Ihemelandu CU et al (2007) Molecular breast cancer subtypes in premenopausal and postmenopausal African-American women: age-specific prevalence and survival. J Surg Res 143(1):109–118

    CAS  PubMed  Google Scholar 

  84. Costa RLB, Gradishar WJ (2017) Triple-negative breast cancer: current practice and future directions. J Oncol Pract 13(5):301–303

    PubMed  Google Scholar 

  85. Torre LA et al (2017) Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev 26(4):444–457

    Google Scholar 

  86. Jemal A, Fedewa SA (2012) Is the prevalence of ER-negative breast cancer in the US higher among Africa-born than US-born black women? Breast Cancer Res Treat 135(3):867–873

    CAS  PubMed  Google Scholar 

  87. Newman LA et al (2019) Hereditary susceptibility for triple negative breast cancer associated with Western Sub-Saharan African ancestry: results from an International Surgical Breast Cancer Collaborative. Ann Surg 270(3):484–492

    PubMed  Google Scholar 

  88. Jiagge E et al (2016) Comparative analysis of breast cancer phenotypes in African American, White American, and West versus East African patients: correlation between African ancestry and triple-negative breast cancer. Ann Surg Oncol 23(12):3843–3849

    PubMed  Google Scholar 

  89. Al-Alem U et al (2014) Association of genetic ancestry with breast cancer in ethnically diverse women from Chicago. PLoS One 9(11):e112916

    PubMed  PubMed Central  Google Scholar 

  90. Kosoy R et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30(1):69–78

    PubMed  PubMed Central  Google Scholar 

  91. Nassir R et al (2009) An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels. BMC Genet 10:39

    PubMed  PubMed Central  Google Scholar 

  92. Mersha TB, Abebe T (2015) Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics 9:1

    PubMed  PubMed Central  Google Scholar 

  93. Newman LA, Carpten J (2018) Integrating the genetics of race and ethnicity into cancer research: trailing Jane and John Q. Public. JAMA Surg 153(4):299–300

    PubMed  PubMed Central  Google Scholar 

  94. Martin DN et al (2009) Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS One 4(2):e4531

    PubMed  PubMed Central  Google Scholar 

  95. Kim G et al (2020) The contribution of race to breast tumor microenvironment composition and disease progression. Front Oncol 10:1022

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nedelec Y et al (2016) Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167(3):657–669 e21

    CAS  PubMed  Google Scholar 

  97. Davis M et al (2018) AR negative triple negative or “quadruple negative” breast cancers in African American women have an enriched basal and immune signature. PLoS One 13(6):e0196909

    PubMed  PubMed Central  Google Scholar 

  98. Davis M, Martini R, Newman L, Elemento O, White J, Verma A, Datta I, Adrianto I, Chen Y, Gardner K, Kim HG, Colomb WD, Eltoum IE, Frost AR, Grizzle WE, Sboner A, Manne U, Yates C (2020) Identification of distinct heterogenic subtypes and molecular signatures associated with African ancestry in triple negative breast cancer using quantified genetic ancestry models in admixed race populations. Cancers (Basel) 12(5):1220. https://doi.org/10.3390/cancers12051220

  99. Livingstone FB (1984) The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum Biol 56(3):413–425

    CAS  PubMed  Google Scholar 

  100. Tournamille C et al (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10(2):224–228

    CAS  PubMed  Google Scholar 

  101. Howes RE et al (2011) The global distribution of the Duffy blood group. Nat Commun 2:266

    PubMed  Google Scholar 

  102. Lu ZH et al (1995) The promiscuous chemokine binding profile of the Duffy antigen/receptor for chemokines is primarily localized to sequences in the amino-terminal domain. J Biol Chem 270(44):26239–26245

    CAS  PubMed  Google Scholar 

  103. Nibbs RJ, Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13(11):815–829

    PubMed  Google Scholar 

  104. Peiper SC et al (1995) The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 181(4):1311–1317

    CAS  PubMed  Google Scholar 

  105. Pruenster M et al (2009) The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10(1):101–108

    CAS  PubMed  Google Scholar 

  106. Jenkins BD et al (2019) Atypical chemokine receptor 1 (DARC/ACKR1) in breast tumors is associated with survival, circulating chemokines, tumor-infiltrating immune cells, and African ancestry. Cancer Epidemiol Biomark Prev 28(4):690–700

    CAS  Google Scholar 

  107. Filbin M, Monje M (2019) Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat Med 25(3):367–376

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Grobner SN et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555(7696):321–327

    PubMed  Google Scholar 

  109. Vaske OM et al (2019) Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer. JAMA Netw Open 2(10):e1913968

    PubMed  PubMed Central  Google Scholar 

  110. Newton Y, Rassekh SR, Deyell RJ, Shen Y, Jones MR, Dunham C, Yip S, Leelakumari S, Zhu J, McColl D, Swatloski T, Salama SR, Ng T, Hendson G, Lee AF, Ma Y, Moore R, Mungall AJ, Haussler D, Stuart JM, Jantzen C, Laskin J, Jones SJM, Marra MA, Morozova O (2018) Comparative RNA-sequencing analysis benefits a pediatric patient with relapsed cancer. JCO Precis Oncol 2:1–16

  111. Consortium GT et al (2017) Genetic effects on gene expression across human tissues. Nature 550(7675):204–213

    Google Scholar 

  112. Ford AM et al (2009) The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Investig 119(4):826–836

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Treehouse Public Data. https://treehousegenomics.soe.ucsc.edu/public-data/

  114. Vivian J et al (2017) Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 35(4):314–316

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liang L et al (2015) Gliomatosis peritonei: a clinicopathologic and immunohistochemical study of 21 cases. Mod Pathol 28(12):1613–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nevelius E (2020) Press release: the Nobel Prize in Chemistry 2020, in Genetic scissors: a tool for rewriting the code of life. The Royal Swedish Academy of Sciences, Stockholm

    Google Scholar 

  117. Fellmann C (2019) Emerging roles of Crispr-cas9 in precision-oncology. In: 8th International Cancer Metastasis Congress. San Francisco

  118. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    CAS  PubMed  Google Scholar 

  119. Jinek M et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–820

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Channel TNPY (2020) Nobel Lecture: Emmanuelle Charpentier, Nobel Prize in Chemistry 2020. Youtube. https://www.youtube.com/watch?v=3POrtQEpV2s

  121. Channel TNPY (2020) Nobel Lecture: Jennifer Doudna, Nobel Prize in Chemistry 2020. Youtube.com. https://www.youtube.com/watch?v=KSrSIErIxMQ

  122. Makarova KS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiang W, Marraffini LA (2015) CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu Rev Microbiol 69:209–228

    CAS  PubMed  Google Scholar 

  124. Sternberg SH et al (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527(7576):110–113

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jinek M et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    PubMed  PubMed Central  Google Scholar 

  127. Cong Le et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–822

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cho SW et al (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232

    CAS  PubMed  Google Scholar 

  129. Fellmann C et al (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89–100

    CAS  PubMed  Google Scholar 

  130. McBride DA et al (2019) Applications of molecular engineering in T-cell-based immunotherapies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(5):e1557

    PubMed  PubMed Central  Google Scholar 

  131. Triolo VA (1965) Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res 25:75–106

    CAS  PubMed  Google Scholar 

  132. Dellinger MT, Witte MH (2018) Lymphangiogenesis, lymphatic systemomics, and cancer: context, advances and unanswered questions. Clin Exp Metastasis 35(5–6):419–424

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Isaac P. Witz, Orit Sagi-Assif and Sivan Izraely thank their colleagues Shlomit Ben-Menachem and Tsipi Meshel, and the Laboratory of Tumor Microenvironment & Metastasis Research for their valuable help and support.

Funding

The research conducted by the authors is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Needham, MA, USA).

Author information

Authors and Affiliations

Authors

Contributions

Equal contribution regarding data/information collection, analysis and writing among the listed authors.

Corresponding authors

Correspondence to Melissa Davis or David Haussler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable for this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented at the 8th International Cancer Metastasis Congress in San Francisco, CA, USA from October 25–27, 2019 (http://www.cancermetastasis.org). To be published in an upcoming Special Issue of Clinical and Experimental Metastasis: Novel Frontiers in Cancer Metastasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, S.P., Witz, I.P., Sagi-Assif, O. et al. Cancer microenvironment and genomics: evolution in process. Clin Exp Metastasis 39, 85–99 (2022). https://doi.org/10.1007/s10585-021-10097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10097-9

Keywords

Navigation