Skip to main content

Advertisement

Log in

A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

CD147 is expressed at low levels in normal tissues but frequently highly expressed in a wide range of tumor types such as lung, breast, and liver and therefore it is a potentially unique therapeutic target for these diverse tumor types. We previously generated a murine antibody HAb18 which suppresses matrix met al.loproteinase-2 and matrix metalloproteinase-9 secretion, attenuates cell invasion by blocking the CD147 molecule in tumor cells. Here, we generated a chimeric antibody containing the variable heavy and variable light chains of murine HAb18 and the constant regions of human IgG1γ1 and human κ chain as a potential therapeutic agent (designated cHAb18). Quantitative measurement of cHAb18 antibody affinity for antigen CD147 with surface plasmon resonance showed the equilibrium dissociation constant KD was 2.66 × 10−10 mol/L, similar to that of KD 2.73 × 10−10 mol/L for murine HAb18. cHAb18 induced antibody-dependent cell-mediated cytotoxicity in two hepatocellular carcinoma cell lines, SMMC-7721 and Huh-7 cells. It inhibited cancer invasion and migration in hepatocellular carcinoma cells by specifically blocking CD147. Except for the depression of matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions, cHAb18 antibody suppressed cell motility by rearrangement of actin cytoskeleton, which was probably induced by decreasing the phosphorylation of focal adhesion kinase, phosphatidylinositide-3 kinase (PI3K), Akt, and Girdin in the integrin signaling pathway. In an orthotopic model of hepatocellular carcinoma in BALB/c nude mice, cHAb18 treatment effectively reduced the tumor metastasis in liver and prolonged the survival. These findings reveal new therapeutic potential for cHAb18 antibody targeting CD147 on tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

BrdU:

Bromodeoxyuridine

DAPI:

4′,6-diamidino-2-phenylindole

DHFR:

Dihydrofolate reductase

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMMPRIN:

Extracellular matrix metalloproteinase inducer

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HCC:

Hepatocellular carcinoma

H&E:

Hematoxylin and eosin

HRP:

Horseradish peroxidase

GHT:

Hypoxanthine and thymidine

GIV/Girdin:

Gα-interacting vesicle-associated protein

MMPs:

Matrix metalloproteinases

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PI3K:

Phosphatidylinositide-3 kinase

VH:

Variable heavy

VL:

Variable light

SDS:

Sodium dodecyl sulfate

SPR:

Surface plasmon resonance

References

  1. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695. doi:10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. doi:10.1038/nm1469

    Article  CAS  PubMed  Google Scholar 

  3. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458. doi:10.1038/nrc1098

    Article  CAS  PubMed  Google Scholar 

  4. Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D (2013) Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci 34:283–289. doi:10.1016/j.tips.2013.03.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nürnberg A, Kitzing T, Grosse R (2011) Nucleating actin for invasion. Nat Rev Cancer 11:177–187. doi:10.1038/nrc3003

    Article  PubMed  Google Scholar 

  6. Hanna S, EI-Sibai M, (2013) Signaling networks of Rho GTPases in cell motility. Cell Signal 25:1955–1961. doi:10.1016/j.cellsig.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  7. Yu CH, Law JB, Suryana M, Low HY, Sheetz MP (2011) Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proc Natl Acad Sci U S A 108:20585–20590. doi:10.1073/pnas.1109485108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18:981–987

    CAS  PubMed  Google Scholar 

  9. Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, Mi L, Wen N, Tian R, Wang L et al (2007) HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 5:605–614. doi:10.1158/1541-7786.MCR-06-0286

    Article  CAS  PubMed  Google Scholar 

  10. Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H (2010) Cancer-related issues of CD147. Cancer Genomics Proteomics 7:157–169

    CAS  PubMed  Google Scholar 

  11. Li Y, Wu J, Song F, Tang J, Wang SJ, Yu XL, Chen ZN, Jiang JL (2012) Extracellular membrane-proximal domain of HAb18G/CD147 binds to metal ion-dependent adhesion site (MIDAS) motif of integrin β1 to modulate malignant properties of hepatoma cells. J Biol Chem 287:4759–4772. doi:10.1074/jbc.M111.277699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dai JY, Dou KF, Wang CH, Zhao P, Lau WB, Tao L, Wu YM, Tang J, Jiang JL, Chen ZN (2009) The interaction of HAb18G/CD147 with integrin alpha6beta1 and its implications for the invasion potential of human hepatoma cells. BMC Cancer 9:337. doi:10.1186/1471-2407-9-337

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 67:4182–4189. doi:10.1158/0008-5472.CAN-06-3184

    Article  CAS  PubMed  Google Scholar 

  14. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67. doi:10.1016/j.cell.2010.03.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Grass GD, Bratoeva M, Toole BP (2012) Regulation of invadopodia formation and activity by CD147. J Cell Sci 125:777–788. doi:10.1242/jcs.097956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grass GD, Tolliver LB, Bratoeva M, Toole BP (2013) CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem 288:26089–26104. doi:10.1074/jbc.M113.497685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wu J, Ru NY, Zhang Y, Li Y, Wei D, Ren Z, Huang XF, Chen ZN, Bian H (2011) HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene 30:4410–4427. doi:10.1038/onc.2011.149

    Article  CAS  PubMed  Google Scholar 

  18. Zhao P, Zhang W, Wang SJ, Yu XL, Tang J, Huang W, Li Y, Cui HY, Guo YS, Tavernier J et al (2011) HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology 54:2012–2024. doi:10.1002/hep.24592

    Article  CAS  PubMed  Google Scholar 

  19. Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022. doi:10.1016/j.cell.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  20. Ku XM, Liao CG, Li Y, Yang XM, Yang B, Yao XY, Wang L, Kong LM, Zhao P, Chen ZN (2007) Epitope mapping of series of monoclonal antibodies against the hepatocellular carcinoma-associated antigen HAb18G/CD147. Scand J Immunol 65:435–443. doi:10.1111/j.1365-3083.2007.01930.x

    Article  CAS  PubMed  Google Scholar 

  21. Bian H, Zheng JS, Nan G, Li R, Chen C, Hu CX, Zhang Y, Sun B, Wang XL, Cui SC, Wu J, Xu J, Wei D, Zhang X, Liu H, Yang W, Ding Y, Li J, Chen ZN (2014) Randomized trial of [131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst 106(9). pii:dju239. doi:10.1093/jnci/dju239

  22. Xu J, Shen ZY, Chen XG, Zhang Q, Bian HJ, Zhu P, Xu HY, Song F, Yang XM, Mi L et al (2007) A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 45:269–276. doi:10.1002/hep.21465

    Article  CAS  PubMed  Google Scholar 

  23. Wu L, Yang YF, Ge NJ, Shen SQ, Liang J, Wang Y, Zhou WP, Shen F, Wu MC (2012) Hepatic artery injection of 131I-labelled metuximab combined with chemoembolization for intermediate hepatocellular carcinoma: a prospective nonrandomized study. Eur J Nucl Med Mol Imaging 39:1306–1315. doi:10.1007/s00259-012-2145-5

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Yang YF, Ge NJ, Shen SQ, Liang J, Wang Y, Zhou WP, Shen F, Wu MC (2010) Hepatic arterial iodine-131-labeled metuximab injection combined with chemoembolization for unresectable hepatocellular carcinoma: interim safety and survival data from 110 patients. Cancer Biother Radiopharm 25(6):657–663. doi:10.1089/cbr.2010.0801

    Article  CAS  PubMed  Google Scholar 

  25. He Q, Lu WS, Liu Y, Guan YS, Kuang AR (2013) 131I-labeled metuximab combined with chemoembolization for unresectable hepatocellular carcinoma. World J Gastroenterol 19(47):9104–9110. doi:10.3748/wjg.v19.i47.9104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, Xing JL, Bian HJ, Jiang JL, Wang XH et al (2006) Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys 65:435–444. doi:10.1016/j.ijrobp.2005.12.034

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Bian H, Feng Q, Mi L, Mo T, Kuang A, Tan T, Li Y, Lu W, Zhang Y et al (2006) Biodistribution and localization of iodine-131-labeled metuximab in patients with hepatocellular carcinoma. Cancer Biol Ther 5:318–322. doi:10.4161/cbt.5.3.2431

    Article  CAS  PubMed  Google Scholar 

  28. Dean NR, Newman JR, Helman EE, Zhang W, Safavy S, Weeks DM, Cunningham M, Snyder LA, Tang Y, Yan L et al (2009) Anti-EMMPRIN monoclonal antibody as a novel agent for therapy of head and neck cancer. Clin Cancer Res 15(12):4058–4065. doi:10.1158/1078-0432.CCR-09-0212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li Y, Shang P, Qian AR, Wang L, Yang Y, Chen ZN (2003) Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol 9(10):2174–2177

    CAS  PubMed  Google Scholar 

  30. Xu HY, Qian AR, Shang P, Xu J, Kong LM, Bian HJ, Chen ZN (2007) siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett 247(2):336–344

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Mi L, Feng Q, Liu R, Tang H, Xie L, Yu X, Chen Z (2005) Increasing the culture efficiency of hybridoma cells by the use of integrated metabolic control of glucose and glutamine at low levels. Biotechnol Appl Biochem 42:73–80

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Mi L, Qin J, Feng Q, Liu R, Yu X, Xu L, Chen Z (2006) Stability validation of seeding cell control parameters in large-scale hybridoma cell culture. Appl Microbiol Biotechnol 70:34–39. doi:10.1007/s00253-005-0047-1

    Article  CAS  PubMed  Google Scholar 

  33. Huang Q, Li J, Xing J, Li W, Li H, Ke X, Zhang J, Ren T, Shang Y, Yang H, Jiang J, Chen Z (2014) CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J Hepatol 61(4):859–866. doi:10.1016/j.jhep.2014.04.035

    Article  CAS  PubMed  Google Scholar 

  34. Cui HY, Guo T, Wang SJ, Zhao P, Dong ZS, Zhang Y, Jiang JL, Chen ZN, Yu XL (2012) Dimerization is essential for HAb18G/CD147 promoting tumor invasion via MAPK pathway. Biochem Biophys Res Commun 419:517–522. doi:10.1016/j.bbrc.2012.02.049

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Yang X, Yang H, Yu X, Li Y, Xing J, Chen ZN (2011) New strategy for large-scale preparation of the extracellular domain of tumor-associated antigen HAb18G/CD147 (HAb18GED). J Biosci Bioeng 111:1–6. doi:10.1016/j.jbiosc.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  36. Zeller KS, Idevall-Hagren O, Stefansson A, Velling T, Jackson SP, Downward J, Tengholm A, Johansson S (2010) PI3-kinase p110α mediates β1 integrin-induced Akt activation and membrane protrusion during cell attachment and initial spreading. Cell Signal 22:1838–1848. doi:10.1016/j.cellsig.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  37. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M (2005) Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9:389–402. doi:10.1016/j.devcel.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Enomoto A, Ping J, Takahashi M (2006) Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. Ann N Y Acad Sci 1086:169–184. doi:10.1196/annals.1377.016

    Article  CAS  PubMed  Google Scholar 

  39. Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341:1192–1198. doi:10.1126/science.1241145

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez L, Strbo N, Podack ER (2013) Humanized mice: novel model for studying mechanisms of human immune-based therapies. Immunol Res 57(1–3):326–334. doi:10.1007/s12026-013-8471-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Curtin KD, Meinertzhagen IA, Wyman RJ (2005) Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. J Cell Sci 118:2649–2660. doi:10.1242/jcs.02408

    Article  CAS  PubMed  Google Scholar 

  42. Tang J, Wu YM, Zhao P, Yang XM, Jiang JL, Chen ZN (2008) Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. Cell Mol Life Sci 65:2933–2942. doi:10.1007/s00018-008-8315-8

    Article  CAS  PubMed  Google Scholar 

  43. Gallagher SM, Castorino JJ, Philp NJ (2009) Interaction of monocarboxylate transporter 4 with beta1-integrin and its role in cell migration. Am J Physiol Cell Physiol 296:C414–C421. doi:10.1152/ajpcell.00430.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yu XL, Hu T, Du JM, Ding JP, Yang XM, Zhang J, Yang B, Shen X, Zhang Z, Zhong WD et al (2008) Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem 283:18056–18065. doi:10.1074/jbc.M802694200

    Article  CAS  PubMed  Google Scholar 

  45. Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10:143–153. doi:10.1038/nrclinonc.2013.10

    Article  CAS  PubMed  Google Scholar 

  46. López-Sánchez I, Garcia-Marcos M, Mittal Y, Aznar N, Farquhar MG, Ghosh P (2013) Protein kinase C-theta (PKCθ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin. Proc Natl Acad Sci U S A 110:5510–5515. doi:10.1073/pnas.1303392110

    Article  PubMed Central  PubMed  Google Scholar 

  47. Garcia-Marcos M, Ghosh P, Farquhar MG (2009) GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci U S A 106:3178–3183. doi:10.1073/pnas.0900294106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Garcia-Marcos M, Kietrsunthorn PS, Pavlova Y, Adia MA, Ghosh P, Farquhar MG (2012) Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling. Proc Natl Acad Sci U S A 109:1961–1966. doi:10.1073/pnas.1120538109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Villanueva A, Llovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140:1410–1426. doi:10.1053/j.gastro.2011.03.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81172144) and the National Science and Technology Major Project (Nos. 2012ZX10002-015 and 2012AA020806).

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Nan Chen or Huijie Bian.

Additional information

Yuan Wang and Lin Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yuan, L., Yang, XM. et al. A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway. Clin Exp Metastasis 32, 39–53 (2015). https://doi.org/10.1007/s10585-014-9689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9689-7

Keywords

Navigation