Skip to main content

Advertisement

Log in

Development and characterization of a reliable mouse model of colorectal cancer metastasis to the liver

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most frequent cancer and the third leading cause of cancer deaths in the United States (American Cancer Society, Cancer facts and figures 2012, 20121). The major cause of death is metastasis and frequently, the target organ is the liver. Successful metastasis depends on acquired properties in cancer cells that promote invasion and migration, and on multiple interactions between tumors and host-derived cells in the microenvironment. These processes, however, occur asymptomatically, thus, metastasis remains poorly understood and often diagnosed only at the final stage. To facilitate the elucidation of the mechanisms underlying these processes and to identify the molecular regulators, particularly at the early stages, we developed a mouse model of hepatic metastasis of CRC by cecal implantation of a mouse adenocarcinoma cell line in an immune competent host that reliably recapitulates all steps of tumor growth and metastasis within a defined period. By in vivo selection, we isolated cells of varying metastatic potential. The most highly metastatic CT26-FL3 cells produced liver metastasis as early as 10 days after implantation in 90 % of host mice. These cells expressed elevated levels of genes whose products promote invasion, migration, and mobilization of bone marrow derived cells (BMDCs). Mice bearing tumors from CT26-FL3 had elevated serum levels of OPN, MMP9, S100A8, S100A9, SAA3, and VEGFA that promote invasion and BMDC mobilization, and showed enhanced BMDC recruitment to the liver where they established a pre-metastatic niche. This model provides an important platform to characterize metastatic cells and elucidate tumor–host interactions and mechanisms that drive liver metastasis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

BMDC:

Bone marrow derived cells

PMN:

Pre-metastatic niche

HSC:

Hematopoietic stem cells

BM:

Bone marrow

BMT:

Bone marrow transplantation

PCNA:

Proliferating Cell Nuclear Antigen

MMP:

Matrix metalloproteinase

VEGF:

Vascular endothelial growth factor

VEGF-R1:

VEGF receptor 1

LOX:

Lysyl oxidase

CCND1:

Cyclin D1

OPN:

Osteopontin

SAA3:

Serum amyloid A3

HRP:

Horseradish peroxidase

HGF:

Hepatocyte growth factor

IL-6:

Interleukin 6

TNF-α:

Tumor necrosis factor alpha

IFN-γ:

Interferon gamma

CSF:

Colony stimulating factor

LLC:

Lewis lung carcinoma

eGFP:

Enhanced green fluorescent protein

RFP:

Red fluorescent protein

MDSC:

Myeloid derived suppressor cells

References

  1. American Cancer Society (2012) Cancer facts and figures 2012. American Cancer Society, Atlanta, pp 25–26

    Google Scholar 

  2. Schima W, Kulinna C, Langenberger H et al (2005) Liver metastases of colorectal cancer: US, CT or MR? Cancer imaging 5 Spec No A:S149–S156

    Article  PubMed  Google Scholar 

  3. Shibue T, Weinberg RA (2011) Metastatic colonization: settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Semin Cancer Biol 21(2):99–106

    Article  PubMed  CAS  Google Scholar 

  4. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  PubMed  CAS  Google Scholar 

  5. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093

    Article  PubMed  CAS  Google Scholar 

  6. Taketo MM, Edelmann W (2009) Mouse models of colon cancer. Gastroenterology 136(3):780–798

    Article  PubMed  CAS  Google Scholar 

  7. Kobaek-Larsen M, Thorup I, Diederichsen A et al (2000) Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans. Comp Med 50(1):16–26

    PubMed  CAS  Google Scholar 

  8. Heijstek MW, Kranenburg O (2005) Borel Rinkes IH. Mouse models of colorectal cancer and liver metastases. Digestive surgery 22(1–2):16–25

    Article  PubMed  CAS  Google Scholar 

  9. Alencar H, King R, Funovics M et al (2005) A novel mouse model for segmental orthotopic colon cancer. Int J cancer 117(3):335–339

    Article  PubMed  CAS  Google Scholar 

  10. Cespedes MV, Espina C, Garcia-Cabezas MA et al (2007) Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am J Pathol 170(3):1077–1085

    Article  PubMed  CAS  Google Scholar 

  11. Hackl C, Man S, Francia G et al (2013) Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62(2):259–271

    Article  PubMed  Google Scholar 

  12. Bresalier RS, Hujanen ES, Raper SE et al (1987) An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47(5):1398–1406

    PubMed  CAS  Google Scholar 

  13. Lin JC, Cheng JY, Tzeng CC et al (1991) An animal model for colon cancer metastatic cell line with enhanced metastasizing ability. Establishment and characterization. Dis Colon Rectum 34(6):458–463

    Article  PubMed  CAS  Google Scholar 

  14. Morikawa K, Walker SM, Nakajima M et al (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871

    PubMed  CAS  Google Scholar 

  15. Morikawa K, Walker SM, Jessup JM et al (1988) In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 48(7):1943–1948

    PubMed  CAS  Google Scholar 

  16. Ijichi H, Chytil A, Gorska AE et al (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Investig 121(10):4106–4117

    Article  PubMed  CAS  Google Scholar 

  17. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  PubMed  CAS  Google Scholar 

  18. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  PubMed  CAS  Google Scholar 

  19. van Kempen LC, Coussens LM (2002) MMP9 potentiates pulmonary metastasis formation. Cancer Cell 2(4):251–252

    Article  PubMed  Google Scholar 

  20. Hiratsuka S, Watanabe A, Sakurai Y et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349–1355

    Article  PubMed  CAS  Google Scholar 

  21. Loges S, Mazzone M, Hohensinner P et al (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15(3):167–170

    Article  PubMed  CAS  Google Scholar 

  22. McAllister SS, Gifford AM, Greiner AL et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133(6):994–1005

    Article  PubMed  CAS  Google Scholar 

  23. Ichikawa M, Williams R, Wang L et al (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9(2):133–148

    Article  PubMed  CAS  Google Scholar 

  24. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25(4):521–529

    Article  PubMed  Google Scholar 

  25. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  26. Yamada Y, Yamaguchi T, Matsumoto H et al (2011) Phase II study of oral S-1 with irinotecan and bevacizumab (SIRB) as first-line therapy for patients with metastatic colorectal cancer. Invest New Drugs 30(4):1690–1696. doi:10.1007/s10637-011-9743-0

    Article  PubMed  Google Scholar 

  27. Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44

    Article  PubMed  CAS  Google Scholar 

  28. Spano D, Zollo M (2012) Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29(4):381–395

    Article  PubMed  CAS  Google Scholar 

  29. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  CAS  Google Scholar 

  30. Bos PD, Nguyen DX, Massague J (2010) Modeling metastasis in the mouse. Curr Opin Pharmacol 10(5):571–577

    Article  PubMed  CAS  Google Scholar 

  31. Hiratsuka S, Watanabe A, Aburatani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375

    Article  PubMed  CAS  Google Scholar 

  32. Sun FX, Sasson AR, Jiang P et al (1999) An ultra-metastatic model of human colon cancer in nude mice. Clin Exp Metastasis 17(1):41–48

    Article  PubMed  CAS  Google Scholar 

  33. Thalheimer A, Illert B, Bueter M et al (2006) Feasibility and limits of an orthotopic human colon cancer model in nude mice. Comp Med 56(2):105–109

    PubMed  CAS  Google Scholar 

  34. Rashidi B, Sun FX, Jiang P et al (2000) A nude mouse model of massive liver and lymph node metastasis of human colon cancer. Anticancer res 20(2A):715–722

    PubMed  CAS  Google Scholar 

  35. Rashidi B, Gamagami R, Sasson A et al (2000) An orthotopic mouse model of remetastasis of human colon cancer liver metastasis. Clin cancer res 6(6):2556–2561

    PubMed  CAS  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  37. Partin AW, Schoeniger JS, Mohler JL et al (1989) Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci U S A 86(4):1254–1258

    Article  PubMed  CAS  Google Scholar 

  38. Silletti S, Paku S, Raz A (1998) Autocrine motility factor and the extracellular matrix. II. Degradation or remodeling of substratum components directs the motile response of tumor cells. Int J Cancer 76(1):129–135

    Article  PubMed  CAS  Google Scholar 

  39. Malkas LH, Herbert BS, Abdel-Aziz W et al (2006) A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci U S A 103(51):19472–19477

    Article  PubMed  CAS  Google Scholar 

  40. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  PubMed  CAS  Google Scholar 

  41. Huber MA, Maier HJ, Alacakaptan M et al (2010) BI 5700, a selective chemical inhibitor of IkappaB Kinase 2, specifically suppresses epithelial-mesenchymal transition and metastasis in mouse models of tumor progression. Genes Cancer 1(2):101–114

    Article  PubMed  CAS  Google Scholar 

  42. Otte JM, Schmitz F, Kiehne K et al (2000) Functional expression of HGF and its receptor in human colorectal cancer. Digestion 61(4):237–246

    Article  PubMed  CAS  Google Scholar 

  43. Kammula US, Kuntz EJ, Francone TD et al (2007) Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett 248(2):219–228

    Article  PubMed  CAS  Google Scholar 

  44. Grivennikov SI, Karin M (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70(Suppl 1):i104–i108

    Article  PubMed  CAS  Google Scholar 

  45. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371

    Article  PubMed  CAS  Google Scholar 

  46. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98(3):295–303

    Article  PubMed  CAS  Google Scholar 

  47. Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14(3):109–119

    Article  PubMed  CAS  Google Scholar 

  48. Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113

    Article  PubMed  CAS  Google Scholar 

  49. Grivennikov SI, Kuprash DV, Liu ZG et al (2006) Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: from simple paradigms to complex mechanisms. Int Rev Cytol 252:129–161

    Article  PubMed  CAS  Google Scholar 

  50. Matthews CP, Colburn NH, Young MR (2007) AP-1 a target for cancer prevention. Curr Cancer Drug Targets 7(4):317–324

    Article  PubMed  CAS  Google Scholar 

  51. Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Investig 118(2):560–570

    PubMed  CAS  Google Scholar 

  52. Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin cancer res 17(19):6118–6124

    Article  PubMed  CAS  Google Scholar 

  53. Gorbacheva VY, Lindner D, Sen GC et al (2002) The interferon (IFN)-induced GTPase, mGBP-2. Role in IFN-gamma-induced murine fibroblast proliferation. J Biol Chem 277(8):6080–6087

    Article  PubMed  CAS  Google Scholar 

  54. Lollini PL, Bosco MC, Cavallo F et al (1993) Inhibition of tumor growth and enhancement of metastasis after transfection of the gamma-interferon gene. Int J cancer 55(2):320–329

    Article  PubMed  CAS  Google Scholar 

  55. Metcalf D, Begley CG, Johnson GR et al (1986) Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor. Blood 67(1):37–45

    PubMed  CAS  Google Scholar 

  56. Smith BR (1990) Regulation of hematopoiesis. Yale J Biol Med 63(5):371–380

    PubMed  CAS  Google Scholar 

  57. Urdinguio RG, Fernandez AF, Moncada-Pazos A et al (2013) Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res 73(1):395–405

    Article  PubMed  CAS  Google Scholar 

  58. Scapini P, Morini M, Tecchio C et al (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040

    PubMed  CAS  Google Scholar 

  59. Acharyya S, Oskarsson T, Vanharanta S et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  PubMed  CAS  Google Scholar 

  60. Berencsi K, Meropol NJ, Hoffman JP et al (2007) Colon carcinoma cells induce CXCL11-dependent migration of CXCR3-expressing cytotoxic T lymphocytes in organotypic culture. Cancer immunol Immunother 56(3):359–370

    Article  PubMed  CAS  Google Scholar 

  61. Elkabets M, Gifford AM, Scheel C et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Investig 121(2):784–799

    Article  PubMed  CAS  Google Scholar 

  62. Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226

    Article  PubMed  CAS  Google Scholar 

  63. Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66(21):10238–10241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to Ms. Anna McNeal Harper and Dr. Udai Singh of the Biotechnology Core, USC Scholl of Medicine, for technical support in confocal microscopy and flow cytometry, respectively, and Ms. Julia Long, Palmetto Richland Radiology and Oncology for assistance with mouse irradiation. This study was supported by NIH Grants P20 RR17698 as a Target Principal Investigator of the USC Center for Colon Cancer Research and R01CA154731-1A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Marjorette O. Peña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2013_9591_MOESM1_ESM.tif

Supplemental Fig. 1 Migration of eGFP positive BMDCs into the liver prior to the arrival to tumor cells mCherry-RFP positive tumor cells at 3 weeks post cecal implantation. Liver sections were analyzed for green fluorescence (eGFP), red fluorescence (mCherry), Phalloidin (actin) and DAPI (blue). Cells implanted with CT26-FL3 showed the presence of BMDCs and the absence of tumor cells (upper panel) while both green and red fluorescence were absent in control Sham injected animals (lower panel)

10585_2013_9591_MOESM2_ESM.tif

Supplemental Fig. 2. Co-localization of markers associated with pre-metastatic niche formation with BMDCs infiltrating the liver prior to the arrival of metastasizing tumor cells. Balbc/ByJ mice were transplanted with BM from transgenic mice expressing eGFP prior to implantation of CT26-FL3 cells into the cecum. Liver sections were taken 2.5 weeks post cecal implantation. The sections were stained with antibodies against S100A8 (top panel), S100A9 (second panel), LOX (third panel), and VEGF-R1 (bottom panel), then examined for the presence of BMDCs (Green), and counterstained with DAPI (Blue). Red = Positive staining for protein specific antibodies. Images were the merged to determine co-localization of the protein markers with the eGFP positive BMDCs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Davis, C., Ryan, J. et al. Development and characterization of a reliable mouse model of colorectal cancer metastasis to the liver. Clin Exp Metastasis 30, 903–918 (2013). https://doi.org/10.1007/s10585-013-9591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9591-8

Keywords

Navigation