Skip to main content

Advertisement

Log in

Non-receptor tyrosine kinase 2 reaches its lowest expression levels in human breast cancer during regional nodal metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Almost half of breast Ductal Carcinoma in situ are likely to remain non threatening in situ lesions with no invasion to the surrounding stroma and no metastases. The majority of focal disruptions in myoepithelial (ME) cell layers indicative of invasion onset were found to be overlying epithelial cell clusters with no or substantially reduced estrogen receptor α (ERα) expression. Here we report the down-regulation of tyrosine kinase-2 (TYK2) and up-regulation of strumpellin expression, among other proteins in ERα(−) cells located at disrupted ME layers compared to adjacent ERα(+) cells overlying an intact myoepithelial layer. ERα(+) and ERα(−) cells were microdissected from the same in vivo human breast cancer tissues, proteins were extracted and separated utilizing Differential in-Gel Electrophoresis followed by trypsin digestion, MALDI-TOF analysis, and protein identification. Proteins expressed by ERα(−) cell clusters were found to express higher levels of strumpellin that binds to valosin-containing protein (VCP) to slow-down wound closure and promote growth; and lower levels of TYK2, a jak protein necessary for lineage specific differentiation. TYK2 levels were further analyzed by immunohistochemistry in a cohort composed of 70 patients with broad clinical characteristics. TYK2 levels were minimal in TxN1M0 breast cancers which is the stage where the initial regional lymph node metastasis is observed. Our data highlight the role of TYK2 downregulation in breast cancer cell de-differentitation and initiation of regional metastasis. In addition, the aggressiveness of the ERα(−) cell clusters compared to ERα(+) ones present in the same duct of the same patient was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skinner KA, Silverstein MJ (2001) The management of ductal carcinoma in situ of the breast. Endocr Relat Cancer 8(1):33–45

    Article  PubMed  CAS  Google Scholar 

  2. Man YG, Sang QXA (2004) The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the “protease-centered” hypothesis. Exp Cell Res 301(2):103–118

    Article  PubMed  CAS  Google Scholar 

  3. Man YG, Tai L, Barner R et al (2003) Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion. Breast Cancer Res 5(6):R231–R241

    Article  PubMed  CAS  Google Scholar 

  4. Man YG, Shekitka KM, Bratthauer GL et al (2002) Immunohistochemical and genetic alterations in mammary epithelial cells immediately overlying focally disrupted myoepithelial cell layers. Breast Cancer Res Treat 76:S143–S153

    Google Scholar 

  5. Yousefi M, Mattu R, Gao CL et al (2005) Mammary ducts with and without focal myoepithelial cell layer disruptions show a different frequency of white blood cell infiltration and growth pattern: Implications for tumor progression and invasion. Appl Immunohistochem Mol Morphol 13(1):30–37

    Article  PubMed  Google Scholar 

  6. Sahab ZJ, Man YG, Byers SW et al (2011) Putative biomarkers and targets of estrogen receptor negative human breast cancer. Int J Mol Sci 12(7):4504–4521

    Article  PubMed  CAS  Google Scholar 

  7. Sahab ZJ, Man YG, Semaan SM et al (2010) Alteration in protein expression in estrogen receptor alpha-negative human breast cancer tissues indicates a malignant and metastatic phenotype. Clin Exp Metastasis 27(7):493–503

    Article  PubMed  CAS  Google Scholar 

  8. Stoiber D, Kovacic B, Schuster C et al (2004) TYK2 is a key regulator of the surveillance of B lymphoid tumors. J Clin Invest 114(11):1650–1658

    PubMed  CAS  Google Scholar 

  9. Wilks AF (1989) 2 Putative protein-tyrosine kinases identified by application of the polymerase chain-reaction. In: Proceedings of the National Academy of Sciences of the United States of America 86(5): 1603–1607

  10. Sahab ZJ, Suh Y, Sang QXA (2005) Isoelectric point-based prefractionation of proteins from crude biological samples prior to two-dimensional gel electrophoresis. J Proteome Res 4(6):2266–2272

    Article  PubMed  CAS  Google Scholar 

  11. Sahab ZJ, Hall MD, Zhang L et al (2010) Tumor suppressor RARRES1 regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J Cancer 1(1):14–22

    Article  PubMed  CAS  Google Scholar 

  12. Sahab ZJ, Iczkowski KA, Sang QXA (2007) Anion exchange fractionation of serum proteins versus albumin elimination. Anal Biochem 368(1):24–32

    Article  PubMed  CAS  Google Scholar 

  13. Khamis ZI, Sahab ZJ, Byers SW, et al (2011) Novel stromal biomarkers in human breast cancer tissues provide evidence for the more malignant phenotype of estrogen receptor-negative tumors. J Biomed Biotechnol 2011:7, Article ID 723650

  14. Sahab ZJ, Hall MD, Sung YM et al (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the a-tubulin tyrosination cycle. Cancer Res 71(4):1219–1228

    Article  PubMed  CAS  Google Scholar 

  15. Clemen CS, Tangavelou K, Strucksberg KH et al (2010) Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain 133:2920–2941

    Article  PubMed  Google Scholar 

  16. Rabilloud T, Adessi C, Giraudel A et al (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18(3–4):307–316

    Article  PubMed  CAS  Google Scholar 

  17. Ihle JN (1995) Cytokine receptor signaling. Nature 377(6550):591–594

    Article  PubMed  CAS  Google Scholar 

  18. Firmbachkraft I, Byers M, Shows T et al (1990) Tyk2, prototype of a novel class of nonreceptor tyrosine kinase genes. Oncogene 5(9):1329–1336

    CAS  Google Scholar 

  19. Minegishi Y, Saito M, Morio T et al (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25(5):745–755

    Article  PubMed  CAS  Google Scholar 

  20. Grimbacher B, Holland SM, Gallin JI et al (1999) Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 340(9):692–702

    Article  PubMed  CAS  Google Scholar 

  21. Watanabe MAE, Oda JMM, Amarante MK et al (2010) Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev 29(4):569–579

    Article  PubMed  CAS  Google Scholar 

  22. Ownby D, Ownby H, Roi L, et al (1982) The prognostic value of serum ige levels in primary breast-cancer. In: Proceedings of the American Association for Cancer Research 23: 150–150

  23. Zhang XC, Hashemi SS, Yousefi M et al (2009) Atypical E-cadherin expression in cell clusters overlying focally disrupted mammary myoepithelial cell layers: implications for tumor cell motility and invasion. Pathol Res Pract 205(6):375–385

    Article  PubMed  CAS  Google Scholar 

  24. Sivko GS, Sanford DC, Dearth LD et al (2004) CCAAT/enhancer binding protein delta (C/EBP delta) regulation and expression in human mammary epithelial cells: II. Analysis of activating signal transduction pathways, transcriptional, post-transcriptional, and post-translational control. J Cell Biochem 93(4):844–856

    Article  PubMed  CAS  Google Scholar 

  25. Tao L, Liu JY, Li Z et al (2010) Role of the JAK-STAT pathway in proliferation and differentiation of human hypertrophic scar fibroblasts induced by connective tissue growth factor. Mol Med Reports 3(6):941–945

    CAS  Google Scholar 

  26. Chung BM, Kang HC, Han SY et al (2006) Jak2 and Tyk2 are necessary for lineage-specific differentiation, but not for the maintenance of self-renewal of mouse embryonic stem cells. Biochem Biophys Res Commun 351(3):682–688

    Article  PubMed  CAS  Google Scholar 

  27. Ide H, Nakagawa T, Terado Y et al (2008) Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells. Biochem Biophys Res Commun 369(2):292–296

    Article  PubMed  CAS  Google Scholar 

  28. Schuster C, Muller M, Freissinuth M et al (2008) Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells. Biochem Biophys Res Commun 366(4):869–870

    Article  PubMed  CAS  Google Scholar 

  29. Nevalainen MT, Xie JW, Torhorst J et al (2004) Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol 22(11):2053–2060

    Article  PubMed  CAS  Google Scholar 

  30. Sultan AS, Xie JW, LeBaron MJ et al (2005) Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 24(5):746–760

    Article  PubMed  CAS  Google Scholar 

  31. Song XC, Fu GY, Yang XF et al (2008) Protein expression profiling of breast cancer cells by dissociable antibody microarray (DAMA) staining. Mol Cellular Proteomics 7(1):163–169

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the Charles and Mary Latham Fund to ZJ Sahab, grant BCTR0504465 from the Susan G. Komen Breast Cancer Foundation, grants from the Florida Breast Cancer Coalition Research Foundation, the Elsa U. Pardee Foundation, and the Florida State University to Q.-X. Sang, and a grant BCTR0706983 from the Susan G. Komen Breast Cancer Foundation, grant 2006CB910505 from the Ministry of Chinese Science and Technology to Y.-G. Man, and grants R01CA129813 and P01 CA130821 to SW Byers. The authors wish to acknowledge the support of the following Lombardi Comprehensive Cancer Center Core Facilities (NIH P30 CA51008): Tissue culture, Histopathology, Microscopy, and Proteomics shared resources.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad J. Sahab.

Additional information

Qing-Xiang Amy Sang, Yan-Gao Man, You Me Sung have contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, QX.A., Man, YG., Sung, Y.M. et al. Non-receptor tyrosine kinase 2 reaches its lowest expression levels in human breast cancer during regional nodal metastasis. Clin Exp Metastasis 29, 143–153 (2012). https://doi.org/10.1007/s10585-011-9437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9437-1

Keywords

Navigation