Skip to main content

Advertisement

Log in

Laminin α5-derived peptides modulate the properties of metastatic breast tumour cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The basement membrane protein laminin-511 has been implicated in breast cancer progression and metastasis. To identify peptides from LM-511 that modulate the metastatic properties of breast tumours, we screened laminin alpha 5 chain-derived peptides for their ability to promote adhesion of metastatic mammary carcinoma cells. Two selected adhesive peptides, α5A13b (FHVAYVLIKF) from the LN domain and A5G27 (RLVSYNGIIFFLK) from the LG-globular domain, were further characterised for their inhibitory properties against LM-511 activities in vitro and metastasis in vivo. In vitro, these peptides strongly inhibited LM-511-dependent adhesion and migration of highly metastatic 4T1.2 mammary carcinoma cells. In addition, A5G27 but not α5A13b significantly reduced breast tumour cell proliferation and inhibited laminin-511-induced matrix metalloproteinase-9 expression. Surprisingly, despite its potent inhibitory activity in vitro, A5G27 promoted rather than inhibited 4T1.2 experimental pulmonary metastasis in vivo, regardless of its route of administration. Adhesion of 4T1.2 cells to A5G27 was not inhibited by antibodies directed against α6, β1 or β3 integrins or CD44 but was significantly reduced in the presence of heparin suggesting a role for cell surface glycans. Treatment of the cells with α-l-fucosidase but not neuraminidase or heparinase II also partially inhibited cell adhesion to A5G27 and to LM-511 indicating that these interactions are mediated in part via terminal fucosyl residues. Overall, these results show that LMα5 peptides exhibit distinct functional properties in vitro and in vivo and suggest that interactions between the RLVSYNGIIFFLK sequence present in LM-511 and cell surface glycans may regulate LM-511 metastatic properties in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LM:

Laminin

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

SFM:

Serum-free medium

References

  1. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  PubMed  CAS  Google Scholar 

  2. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  PubMed  CAS  Google Scholar 

  3. Ghohestani RF, Li K, Rousselle P et al (2001) Molecular organization of the cutaneous basement membrane zone. Clin Dermatol 19(5):551–562

    Article  PubMed  CAS  Google Scholar 

  4. Tester AM, Ruangpanit N, Anderson RL et al (2000) MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18(7):553–560

    Article  PubMed  CAS  Google Scholar 

  5. Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3(1):1–13

    PubMed  CAS  Google Scholar 

  6. Durbeej M (2010) Laminins. Cell Tissue Res 339(1):259–268

    Article  PubMed  CAS  Google Scholar 

  7. Scheele S, Nystrom A, Durbeej M et al (2007) Laminin isoforms in development and disease. J Mol Med 85(8):825–836

    Article  PubMed  CAS  Google Scholar 

  8. Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40(2):199–214

    Article  PubMed  CAS  Google Scholar 

  9. Chia J, Kusuma N, Anderson R et al (2007) Evidence for a role of tumor-derived laminin-511 in the metastatic progression of breast cancer. Am J Pathol 170(6):2135–2148

    Article  PubMed  CAS  Google Scholar 

  10. Fujita M, Khazenzon NM, Bose S et al (2005) Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res 7(4):R411–R421

    Article  PubMed  CAS  Google Scholar 

  11. Gudjonsson T, Ronnov-Jessen L, Villadsen R et al (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(Pt 1):39–50

    PubMed  CAS  Google Scholar 

  12. Gusterson BA, Warburton MJ, Monaghan P et al (1984) The use of immunohistochemical probes in the study of benign and malignant breast disease. Behring Inst Mitt 74:39–48

    PubMed  Google Scholar 

  13. Henning K, Berndt A, Katenkamp D et al (1999) Loss of laminin-5 in the epithelium-stroma interface: an immunohistochemical marker of malignancy in epithelial lesions of the breast. Histopathology 34(4):305–309

    Article  PubMed  CAS  Google Scholar 

  14. Martin KJ, Kwan CP, Nagasaki K et al (1998) Down-regulation of laminin-5 in breast carcinoma cells. Mol Med 4(9):602–613

    PubMed  CAS  Google Scholar 

  15. Slade MJ, Coope RC, Gomm JJ et al (1999) The human mammary gland basement membrane is integral to the polarity of luminal epithelial cells. Exp Cell Res 247(1):267–278

    Article  PubMed  CAS  Google Scholar 

  16. Kusuma N, Denoyer D, Eble JA et al (2011) Integrin-dependent response to laminin-511 regulates breast tumor cell invasion and metastasis. Int J Cancer. doi:10.1002/ijc.26018

  17. Adair-Kirk TL, Atkinson JJ, Broekelmann TJ et al (2003) A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J Immunol 171(1):398–406

    PubMed  CAS  Google Scholar 

  18. Kadoya Y, Mochizuki M, Nomizu M et al (2003) Role for laminin-alpha5 chain LG4 module in epithelial branching morphogenesis. Dev Biol 263(1):153–164

    Article  PubMed  CAS  Google Scholar 

  19. Hibino S, Shibuya M, Engbring JA et al (2004) Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res 64(14):4810–4816

    Article  PubMed  CAS  Google Scholar 

  20. Hibino S, Shibuya M, Hoffman MP et al (2005) Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res 65(22):10494–10501

    Article  PubMed  CAS  Google Scholar 

  21. Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    Article  PubMed  CAS  Google Scholar 

  22. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239

    Article  PubMed  CAS  Google Scholar 

  23. Reynolds AR, Hart IR, Watson AR et al (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15(4):392–400

    Article  PubMed  CAS  Google Scholar 

  24. Doi M, Thyboll J, Kortesmaa J et al (2002) Recombinant human laminin-10 (alpha5beta1gamma1). Production, purification, and migration-promoting activity on vascular endothelial cells. J Biol Chem 277(15):12741–12748

    CAS  Google Scholar 

  25. Lelekakis M, Moseley JM, Martin TJ et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170

    Article  PubMed  CAS  Google Scholar 

  26. Sloan EK, Pouliot N, Stanley KL et al (2006) Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8(2):R20

    Article  PubMed  Google Scholar 

  27. Rizki A, Weaver VM, Lee SY et al (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387

    Article  PubMed  CAS  Google Scholar 

  28. Mendes O, Kim HT, Stoica G (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22(3):237–246

    Article  PubMed  CAS  Google Scholar 

  29. Somiari SB, Somiari RI, Heckman CM et al (2006) Circulating MMP2 and MMP9 in breast cancer—potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int J Cancer 119(6):1403–1411

    Article  PubMed  CAS  Google Scholar 

  30. Mu Y, Kamada H, Kaneda Y et al (1999) Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells. Biochem Biophys Res Commun 255(1):75–79

    Article  PubMed  CAS  Google Scholar 

  31. Kanemoto T, Reich R, Royce L et al (1990) Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc Natl Acad Sci USA 87(6):2279–2283

    Article  PubMed  CAS  Google Scholar 

  32. Yu H, Talts JF (2003) Beta1 integrin and alpha-dystroglycan binding sites are localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 chain G domain. Biochem J 371(Pt 2):289–299

    Article  PubMed  CAS  Google Scholar 

  33. Laidler P, Litynska A (1997) Tumor cell N-glycans in metastasis. Acta Biochim Pol 44(2):343–357

    PubMed  CAS  Google Scholar 

  34. Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56(23):5309–5318

    PubMed  CAS  Google Scholar 

  35. Zhang Y, Zhang XY, Liu F et al (2002) The roles of terminal sugar residues of surface glycans in the metastatic potential of human hepatocarcinoma. J Cancer Res Clin Oncol 128(11):617–620

    Article  PubMed  CAS  Google Scholar 

  36. Kikkawa Y, Sudo R, Kon J et al (2008) Laminin alpha 5 mediates ectopic adhesion of hepatocellular carcinoma through integrins and/or Lutheran/basal cell adhesion molecule. Exp Cell Res 314(14):2579–2590

    Article  PubMed  CAS  Google Scholar 

  37. Spessotto P, Yin Z, Magro G et al (2001) Laminin isoforms 8 and 10 are primary components of the subendothelial basement membrane promoting interaction with neoplastic lymphocytes. Cancer Res 61(1):339–347

    PubMed  CAS  Google Scholar 

  38. Tani T, Lehto VP, Virtanen I (1999) Expression of laminins 1 and 10 in carcinoma cells and comparison of their roles in cell adhesion. Exp Cell Res 248(1):115–121

    Article  PubMed  CAS  Google Scholar 

  39. Kikkawa Y, Sanzen N, Fujiwara H et al (2000) Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J Cell Sci 113(Pt 5):869–876

    PubMed  CAS  Google Scholar 

  40. Kawataki T, Yamane T, Naganuma H et al (2007) Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res 313(18):3819–3831

    Article  PubMed  CAS  Google Scholar 

  41. Nomizu M, Yokoyama F, Suzuki N et al (2001) Identification of homologous biologically active sites on the N-terminal domain of laminin alpha chains. Biochemistry 40(50):15310–15317

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen PK, Yamada Y (2001) Identification of cell-binding sites on the Laminin alpha 5 N-terminal domain by site-directed mutagenesis. J Biol Chem 276(14):10906–10912

    Article  PubMed  CAS  Google Scholar 

  43. Eble JA, Bruckner P, Mayer U (2003) Vipera lebetina venom contains two disintegrins inhibiting laminin-binding beta1 integrins. J Biol Chem 278(29):26488–26496

    Article  PubMed  CAS  Google Scholar 

  44. Adair-Kirk TL, Atkinson JJ, Kelley DG et al (2005) A chemotactic peptide from laminin alpha 5 functions as a regulator of inflammatory immune responses via TNF alpha-mediated signaling. J Immunol 174(3):1621–1629

    PubMed  CAS  Google Scholar 

  45. Benton G, Kleinman HK, George J et al (2011) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer 128(8):1751–1757

    Article  PubMed  CAS  Google Scholar 

  46. Fridman R, Giaccone G, Kanemoto T et al (1990) Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87(17):6698–6702

    Article  PubMed  CAS  Google Scholar 

  47. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed  CAS  Google Scholar 

  48. Kim WH, Nomizu M, Song SY et al (1998) Laminin-alpha1-chain sequence Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg (LQVQLSIR) enhances murine melanoma cell metastases. Int J Cancer 77(4):632–639

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman MP, Nomizu M, Roque E et al (1998) Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 273(44):28633–28641

    Article  PubMed  CAS  Google Scholar 

  50. Sharma A, Askari JA, Humphries MJ et al (1999) Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 18(6):1468–1479

    Article  PubMed  CAS  Google Scholar 

  51. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482

    Article  PubMed  CAS  Google Scholar 

  52. Saldova R, Reuben JM, Abd Hamid UM et al (2011) Levels of specific serum N-glycans identify breast cancer patients with higher circulating tumor cell counts. Ann Oncol 22(5):1113–1119

    Article  PubMed  CAS  Google Scholar 

  53. Kirmiz C, Li B, An HJ et al (2007) A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 6(1):43–55

    PubMed  CAS  Google Scholar 

  54. Abd Hamid UM, Royle L, Saldova R et al (2008) A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18(12):1105–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Bruce Kemp, Dr. Rohan Steel and Frosa Katsis (St. Vincent’s Institute of Medical Research, Melbourne, Australia) for validating laminin-derived synthetic peptide sequences, Colin House (Peter MacCallum Cancer Centre, Melbourne, Australia) for help with laminin-511 purification and Joshy George (Peter MacCallum Cancer Centre, Melbourne, Australia) for the statistical analysis. We thank Dr. Hynda K. Kleinman, NIH, USA for providing the initial set of laminin peptides. This work was supported by an Australian National Health & Medical Research Council Research Grant #454564 (NP), National Breast Cancer Foundation fellowship (RLA), and Dora Lush Postgraduate Research Scholarship, National Health and Medical Research Council (NK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normand Pouliot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Effect of A5G27S peptide on LM-511-induced expression of MMP-9 in 4T1.2 cells. 4T1.2 cells (1 × 106) were seeded in uncoated or LM-511-coated 24-well plates. Adherent 4T1.2 cells were incubated in the presence of A5G27S peptide (50 μg/ml) in SFM as described in Materials and Methods. a A representative image of gelatin zymography. b Quantitation of MMP-9 protein levels. The results represent mean fold induction relative to control (SFM)±SD from three independent experiments. **p<0.01 by One-way ANOVA. c Real time RT-qPCR analysis of MMP-9 mRNA. MMP-9 transcript levels were calculated relative to that of GAPDH. Values represent the mean ± SD of three independent replicate cultures. *p<0.05 by One-way ANOVA test. (JPEG 493 kb)

Supplementary Fig. 2

a Adhesion of 4T1.2 cells to A5G27 in the presence of 20 μg/ml integrin function-blocking antibodies. b Adhesion of 4T1.2 cells to A5G27 in the presence of 20 μg/ml CD44 function-blocking antibody. c Flow cytometric analysis of CD44 expression in 4T1.2 cells. Cell surface expression of CD44 was determined by standard flow cytometry as described in Materials and Methods. (JPEG 427 kb)

Supplementary Fig. 3

Effect of neuraminidase on 4T1.2 cell adhesion to A5G27 peptides and LM-511. Adhesion of calcein labelled 4T1.2 cells (4 × 104) to A5G27 or LM-511 coated wells was measured after one hour in the presence of neuraminidase as described in Materials and Methods. Results are expressed as mean percentage adhesion relative to normalised untreated controls (A5G27 or LM-511 alone) of three independent experiments. (JPEG 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusuma, N., Anderson, R.L. & Pouliot, N. Laminin α5-derived peptides modulate the properties of metastatic breast tumour cells. Clin Exp Metastasis 28, 909–921 (2011). https://doi.org/10.1007/s10585-011-9422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9422-8

Keywords

Navigation