Skip to main content

Advertisement

Log in

ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Packer RJ (1999) Brain tumors in children. Arch Neurol 56:421–425

    Article  CAS  PubMed  Google Scholar 

  2. Packer RJ, Cogen P, Vezina G et al (1999) Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1:232–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duffner PK, Horowitz ME, Krischer JP et al (1993) Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med 328:1725–1731

    Article  CAS  PubMed  Google Scholar 

  4. Geyer JR, Sposto R, Jennings M et al (2005) Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J Clin Oncol 23:7621–7631

    Article  PubMed  Google Scholar 

  5. Duffner PK, Horowitz ME, Krischer JP et al (1999) The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol 1:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152

    Article  CAS  PubMed  Google Scholar 

  7. Chopra A, Brown KM, Rood BR et al (2003) The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 39:68–74

    Article  PubMed  Google Scholar 

  8. Ferns GA, Sprugel KH, Seifert RA et al (1990) Relative platelet-derived growth factor receptor subunit expression determines cell migration to different dimeric forms of PDGF. Growth Factors 3:315–324

    Article  CAS  PubMed  Google Scholar 

  9. Berrier AL, Mastrangelo AM, Downward J et al (2000) Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin beta1 cytoplasmic domains. J Cell Biol 151:1549–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cox D, Chang P, Zhang Q et al (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bashour AM, Fullerton AT, Hart MJ et al (1997) IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 137:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    CAS  PubMed  Google Scholar 

  13. Amano M, Chihara K, Kimura K et al (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe N, Kato T, Fujita A et al (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1:136–143

    Article  CAS  PubMed  Google Scholar 

  15. Salhia B, Rutten F, Nakada M et al (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65:8792–8800

    Article  CAS  PubMed  Google Scholar 

  16. Wildenberg GA, Dohn MR, Carnahan RH et al (2006) p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027–1039

    Article  CAS  PubMed  Google Scholar 

  17. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  CAS  PubMed  Google Scholar 

  18. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  19. Nimnual AS, Taylor LJ, Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 5:236–241

    Article  CAS  PubMed  Google Scholar 

  20. Sander EE, ten Klooster JP, van Delft S et al (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leeuwen FN, Kain HE, Kammen RA et al (1997) The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J Cell Biol 139:797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lim L, Manser E, Leung T et al (1996) Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem 242:171–185

    Article  CAS  PubMed  Google Scholar 

  23. Sells MA, Knaus UG, Bagrodia S et al (1997) Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7:202–210

    Article  CAS  PubMed  Google Scholar 

  24. Manser E, Huang HY, Loo TH et al (1997) Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin GA, Bollag G, McCormick F et al (1995) A novel serine kinase activated by Rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 14:4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471

    Article  CAS  PubMed  Google Scholar 

  27. Vadlamudi RK, Adam L, Wang RA et al (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244

    Article  CAS  PubMed  Google Scholar 

  28. Adam L, Vadlamudi R, Mandal M et al (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275:12041–12050

    Article  CAS  PubMed  Google Scholar 

  29. Aoki H, Yokoyama T, Fujiwara K et al (2007) Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res 13:6603–6609

    Article  CAS  PubMed  Google Scholar 

  30. Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  31. Lee SH, Kunz J, Lin SH et al (2007) 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res 67:11045–11053

    Article  CAS  PubMed  Google Scholar 

  32. Eblen ST, Slack JK, Weber MJ et al (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22:6023–6033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith SD, Jaffer ZM, Chernoff J et al (2008) PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci 121:3729–3736

    Article  CAS  PubMed  Google Scholar 

  34. Park ER, Eblen ST, Catling AD (2007) MEK1 activation by PAK: a novel mechanism. Cell Signal 19:1488–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coles LC, Shaw PE (2002) PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21:2236–2244

    Article  CAS  PubMed  Google Scholar 

  36. Sundberg-Smith LJ, Doherty JT, Mack CP et al (2005) Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem 280:2055–2064

    Article  CAS  PubMed  Google Scholar 

  37. Bradley EW, Ruan MM, Oursler MJ (2008) PAK1 is a novel MEK-independent raf target controlling expression of the IAP survivin in M-CSF-mediated osteoclast survival. J Cell Physiol 217:752–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. MacDonald TJ, Tabrizi P, Shimada H et al (1998) Detection of brain tumor invasion and micrometastasis in vivo by expression of enhanced green fluorescent protein. Neurosurgery 43:1437–1442

    CAS  PubMed  Google Scholar 

  39. Bhandarkar SS, Bromberg J, Carrillo C et al (2008) Tris (dibenzylideneacetone) dipalladium, a N-myristoyltransferase-1 inhibitor, is effective against melanoma growth in vitro and in vivo. Clin Cancer Res 14:5743–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4:67–79

    Article  CAS  PubMed  Google Scholar 

  41. Manser E, Leung T, Salihuddin H et al (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    Article  CAS  PubMed  Google Scholar 

  42. Rashid T, Banerjee M, Nikolic M (2001) Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 276:49043–49052

    Article  CAS  PubMed  Google Scholar 

  43. Sells MA, Pfaff A, Chernoff J (2000) Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol 151:1449–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahai E, Olson MF, Marshall CJ (2001) Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Engers R, Ziegler S, Mueller M et al (2007) Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer 14:245–256

    Article  CAS  PubMed  Google Scholar 

  46. Baugher PJ, Krishnamoorthy L, Price JE et al (2005) Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res 7:R965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrae J, Afink G, Zhang XQ et al (2004) Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 26:308–321

    Article  CAS  PubMed  Google Scholar 

  48. Kool M, Koster J, Bunt J et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jaffe AB, Hall A (2002) Rho GTPases in transformation and metastasis. Adv Cancer Res 84:57–80

    Article  CAS  PubMed  Google Scholar 

  50. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  51. Allen WE, Jones GE, Pollard JW et al (1997) Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110:707–720

    Article  CAS  PubMed  Google Scholar 

  52. Allen WE, Zicha D, Ridley AJ et al (1998) A role for Cdc42 in macrophage chemotaxis. J Cell Biol 141:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    Article  CAS  PubMed  Google Scholar 

  54. Guo D, Tan YC, Wang D et al (2007) A Rac-cGMP signaling pathway. Cell 128:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chong C, Tan L, Lim L et al (2001) The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 276:17347–17353

    Article  CAS  PubMed  Google Scholar 

  56. Schraml P, Schwerdtfeger G, Burkhalter F et al (2003) Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163:985–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balasenthil S, Sahin AA, Barnes CJ et al (2004) p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279:1422–1428

    Article  CAS  PubMed  Google Scholar 

  58. Carter JH, Douglass LE, Deddens JA et al (2004) Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10:3448–3456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Liangping Yuan, Mariarita Santi and Tobey J. MacDonald are supported by NIH R01 grant CA111835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobey J. MacDonald.

Electronic supplementary material

The following files are unfortunately not in the Publisher's archive anymore:

  • Supplementary Fig. 1 PDGF induces Pak1 phosphorylation and siRNA depletion of Pak1 suppresses PDGF-mediated migration of D556 MB cells. Confirmatory assays in D556 MB cells were performed for PDGF-mediated changes in phosphorylation of Pak1 and the effect of changes in phospho-Pak1 on MB migration, as previously described with Daoy cells. a Western blot shows increased levels of Pak1 phosphorylation at the indicated time points following PDGF-BB (10 ng/ml) treatment of serum-deprived D556 cells. b D556 cells transfected with control or Pak1 siRNA show that Pak1-depleted cells have attenuated PDGF-mediated phosphorylation of Pak1. c Boyden chamber cell migration assay confirms that Pak1-depleted D556 cells have significantly suppressed PDGF-mediated cell migration similar to that observed with Daoy MB cells. Each bar represents the S.E. of triplicate wells. (TIFF 792 kb)

  • Supplementary Fig. 2 PDGF-mediated ERK activation is PDGFRβ-dependent in MB cells. Daoy and D556 cells were transfected with control or shRNA PDGFRβ and stable clones for each were established (NC2, Daoy or D556 cells with negative control shRNA; A11, Daoy with shRNA knockdown of PDGFRβ; B7, D556 with shRNA knockdown of PDGFRβ), stimulated with or without PDGF-BB (10 ng/ml for 15 min), and Western blot was performed for the detection of changes in PDGFRβ and ERK phosphorylation. PDGF-mediated phosphorylation of PDGFRβ and ERK were decreased in MB cells with stable downregulation of PDGFRβ in both cell types. Data are representative of at least three separate experiments. (TIFF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Santi, M., Rushing, E.J. et al. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration. Clin Exp Metastasis 27, 481–491 (2010). https://doi.org/10.1007/s10585-010-9337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9337-9

Keywords

Navigation