Skip to main content

Advertisement

Log in

Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis

Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The biochemical and biological mechanisms metastatic cancer cells use to function as communities and thwart internal and external growth control mechanisms remain undefined. In this work, we present the hypothesis that cancer cells may use a Quorum-Sensing mechanism to regulate multicellular functions and control steps in metastatic colonization. Quorum sensing is a bacterial cell-cell communication process used to track increasing cell-population density and, in response to changes in cell number, coordinate gene expression and behavior on a community-wide scale. Important parallels between the behavior of societies of bacterial cells and societies of malignant cancer cells exist in the bacterial literature. Of relevance to metastasis is the finding that pathogenic bacteria use quorum sensing to determine when their population numbers are high enough to collectively form biofilms in or on host organisms. Biofilms are complex, heterogeneous communities of bacterial cells encased within an extracellular matrix attached to a solid surface. Biofilms exacerbate disease and are refractory to a battery of therapies. We suggest that the quorum-sensing-controlled bacterial biofilm formation process closely parallels the steps in metastatic colonization. Cells migrate toward/on target surfaces (organ-specific homing), show cell-cell and cell-matrix interactions (tumor cell-stromal cell crosstalk), remain subclinical until they can mount an effective attack (dormancy), form complex structures with channels for nutrient flow (vascularized lesions), and contain resistant cells which can cause disease recurrence (persistors). Using ovarian cancer as an example, we present data supporting the connection between metastatic colonization and quorum sensing and discuss the implications for understanding and controlling metastasis formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. added comment—not in original citation.

Abbreviations

d:

Density of cells injected

dpi:

Days post injection

EPS:

Extracellular polysaccharide substance

HA:

Hemagglutinin

JNK:

c-Jun NH2 terminal protein kinase

MAPK:

Mitogen-activate protein kinase

MKK4/SEK1:

Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1

MKK4-KR:

Mitogen-activated protein kinase kinase 4-kinase inactive

N:

Number of cells injected

PCR:

Polymerase chain reaction

SAPK:

Stress-activated protein kinase

SCID:

Severe combined immunodeficient

t:

Length of experiment

Y:

Yield of experimental metastases

References

  1. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893. doi:10.1002/bies.10156

    Article  PubMed  CAS  Google Scholar 

  3. Welch DR (2006) Do we need to redefine a cancer metastasis and staging definitions? Breast Dis 26:3–12.

    PubMed  Google Scholar 

  4. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. doi:10.1038/nm1469

    Article  PubMed  CAS  Google Scholar 

  5. Rinker-Schaeffer CW, O’Keefe JP, Welch DR et al (2006) Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res 12:3882–3889. doi:10.1158/1078-0432.CCR-06-1014

    Article  PubMed  CAS  Google Scholar 

  6. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572. doi:10.1038/nrc865

    Article  PubMed  CAS  Google Scholar 

  7. Taylor J, Hickson J, Lotan T et al (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73. doi:10.1007/s10555-007-9106-7

    Article  PubMed  Google Scholar 

  8. Yamada SD, Hickson JA, Hrobowski Y et al (2002) Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62:6717–6723

    PubMed  CAS  Google Scholar 

  9. Hickson JA, Huo D, Vander Griend DJ et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270. doi:10.1158/0008-5472.CAN-05-3676

    Article  PubMed  CAS  Google Scholar 

  10. Lotan T, Hickson J, Souris J et al (2008) JNKK1/MKK4 mediated inhibition of SKOV3ip. 1 ovarian cancer metastasis involves growth arrest and p21 upregulation. Cancer Res 68:2166–75. doi:10.1158/0008-5472.CAN-07-1568

    Article  PubMed  CAS  Google Scholar 

  11. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    Article  PubMed  CAS  Google Scholar 

  12. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    PubMed  CAS  Google Scholar 

  13. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424. doi:10.1016/S0092-8674(02)00749-3

    Article  PubMed  CAS  Google Scholar 

  14. Tomasz A (1965) Control of the competant state in Pneumococcus by a hormone-like cell product: an example of a new type of regulatory mechanism in bacteria. Nature 208:155–159. doi:10.1038/208155a0

    Article  PubMed  CAS  Google Scholar 

  15. Nealson KH, Platt T, Hatings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescnt system. J Bacteriol 104:313–322

    PubMed  CAS  Google Scholar 

  16. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246. doi:10.1016/j.cell.2006.04.001

    Article  PubMed  CAS  Google Scholar 

  17. Alverdy J, Holbrook C, Rocha F et al (2000) Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 232:480–489. doi:10.1097/00000658-200010000-00003

    Article  PubMed  CAS  Google Scholar 

  18. Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656. doi:10.1016/j.tcb.2004.09.012

    Article  PubMed  CAS  Google Scholar 

  19. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. doi:10.1016/S1369-5274(03)00028-6

    Article  PubMed  CAS  Google Scholar 

  20. Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    PubMed  CAS  Google Scholar 

  21. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273. doi:10.1146/annurev.micro.57.030502.091014

    Article  PubMed  CAS  Google Scholar 

  22. Krukonis ES, DiRita VJ (2003) From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 6:186–190. doi:10.1016/S1369-5274(03)00032-8

    Article  PubMed  CAS  Google Scholar 

  23. Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. doi:10.1111/j.1365-2958.2004.04036.x

    Article  PubMed  CAS  Google Scholar 

  24. Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286. doi:10.1111/j.1365-2958.1994.tb00422.x

    Article  PubMed  CAS  Google Scholar 

  25. Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31:665–677. doi:10.1046/j.1365-2958.1999.01208.x

    Article  PubMed  CAS  Google Scholar 

  26. Welch DR, Aeed PA, Earhart RH et al (1994) Evidence for paracrine regulation of experimental metastasis in 13762NF rat mammary adenocarcinoma cell clones. Anticancer Res 14:1743–1751

    PubMed  CAS  Google Scholar 

  27. Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306. doi:10.1023/A:1018477516367

    Article  PubMed  CAS  Google Scholar 

  28. Hill RP, Chambers AF, Ling V et al (1984) Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224:998–1001. doi:10.1126/science.6719130

    Article  PubMed  CAS  Google Scholar 

  29. Ben Jacob E, Becker I, Shapira Y et al (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366–372. doi:10.1016/j.tim.2004.06.006

    Article  PubMed  CAS  Google Scholar 

  30. Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585. doi:10.1016/j.mib.2003.10.014

    Article  PubMed  CAS  Google Scholar 

  31. Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50:6130–6138

    PubMed  CAS  Google Scholar 

  32. Heppner GH, Miller BE (1989) Therapeutic implications of tumor heterogeneity. Semin Oncol 16:91–105

    PubMed  CAS  Google Scholar 

  33. Heppner GH (1993) Cancer cell societies and tumor progression. Stem Cells 11:199–203

    Article  PubMed  CAS  Google Scholar 

  34. Chambers AF, Harris JF, Ling V et al (1984) Rapid phenotype variation in cells derived from lung metastases of KHT fibrosarcoma. Invasion Metastasis 4:225–237

    PubMed  CAS  Google Scholar 

  35. Chambers AF, Hill RP, Ling V (1981) Tumor heterogeneity and stability of the metastatic phenotype of mouse KHT sarcoma cells. Cancer Res 41:1368–1372.

    PubMed  CAS  Google Scholar 

  36. Ling V, Chambers AF, Harris JF et al (1984) Dynamic heterogeneity and metastasis. J Cell Physiol Suppl 3:99–103. doi:10.1002/jcp.1041210412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Edwin F. Schaeffer III for his insightful discussions and comments which prompted us to first explore the potential link between our data and the quorum-sensing literature. We also thank Dr. Charles B. Brendler for his strong, unwavering, and enthusiastic intellectual, financial, and academic support. We appreciate the encouragement and thoughtful discussions from Dr. Mitchell Sokoloff and for Dr. John Isaacs’ penetrating insights into MKK4-mediated suppression of proliferation. We also thank Dr. Michael Lotze for his encouragement to publish our quorum sensing concepts. We wish to specifically recognize critical, early support from The Department of Defense, The Arthur (MacNeal) Foundation, The Lehman Brothers Foundation, and The University of Chicago Department of Surgery Huggins Competition. This work was specifically funded by The University of Chicago RESCUE Fund (CWR-S); DOD Ovarian Cancer Research Grant DAMD17-03-1-0169 (JH, DY), Grant RO1 CA 89569 (CWR-S, JH), DOD Ovarian Cancer Research Grant W81XWH-06-1-0041 (CWR-S), Arthur Foundation (J.O, CWR-S), Lehman Brothers Foundation (CWR-S), and Gynecologic Cancer Foundation/Ann Schreiber Ovarian Cancer Research Grant (JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Rinker-Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickson, J., Diane Yamada, S., Berger, J. et al. Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clin Exp Metastasis 26, 67–76 (2009). https://doi.org/10.1007/s10585-008-9177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9177-z

Keywords

Navigation