Skip to main content

Advertisement

Log in

Targeting the EGFR, VEGFR, and PDGFR on colon cancer cells and stromal cells is required for therapy

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Immunohistochemical analysis of human colon cancers growing in the cecal walls of nude mice revealed that epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) were expressed by different tumor cells and tumor-associated endothelial cells, whereas platelet-derived growth factor receptor (PDGFR)β was expressed by tumor-associated endothelial cells and pericytes. We hypothesized that treatment of nude mice with AEE788 (an inhibitor of EGFR and VEGFR phosphorylation) and STI571 (an inhibitor of PDGFRβ phosphorylation) combined with irinotecan would overcome the intratumoral heterogeneity of these growth factors and efficiently inhibit colon cancer growth and metastasis. We implanted HT29 and KM12SM cells into the cecal walls of nude mice. Two weeks later, the mice were treated with oral vehicle solution; oral AEE788, oral STI571, or intraperitoneal injection of irinotecan as single agents; or the various combinations of these agents. We then assessed the mice for tumor growth and metastasis. Immunohistochemical analyses revealed that oral AEE788 suppressed proliferation and increased apoptosis of tumor cells and tumor-associated endothelial cells. Oral STI571 increased apoptosis of tumor-associated endothelial cells and pericytes. The combination of AEE788, STI571, and irinotecan produced the greatest inhibition of primary tumor growth and metastasis. Collectively, these data demonstrate that only targeting multiple tyrosine kinase receptors on colon cancer cells and tumor-associated stromal cells can overcome the effects of biologic heterogeneity for resistance to treatment and has the potential to improve therapeutic outcome for patients with this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

HBSS:

Hanks’ balanced salt solution

MVD:

Microvessel density

PDGF:

Platelet-derived growth factor

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

  1. SEER Cancer Statistics Review, 1975–2003; National Cancer Institute

  2. Bond JH (2000) Colorectal cancer update. Prevention, screening, treatment, and surveillance for high-risk groups. Med Clin North Am 84:1163–1182

    Article  PubMed  CAS  Google Scholar 

  3. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370

    Article  PubMed  CAS  Google Scholar 

  4. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  5. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  6. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  7. Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD (1993) Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer 21(53):209–214

    Article  Google Scholar 

  8. Shibata T, Kawano T, Nagayasu H et al (1996) Enhancing effects of epidermal growth factor on human squamous cell carcinoma motility and matrix degradation but not growth. Tumour Biol 17:168–175

    Article  PubMed  CAS  Google Scholar 

  9. Sainsbury JR, Farndon JR, Sherbet GV, Harris AL (1985) Epidermal-growth-factor receptors and oestrogen receptors in human breast cancer. Lancet 16(1):364–366

    Article  Google Scholar 

  10. Herbst RS, Hong WK (2002) IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin Oncol 29:18–30

    PubMed  CAS  Google Scholar 

  11. Mydlo JH, Michaeli J, Cordon-Cardo C et al (1989) Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue. Cancer Res 49:3407–3411

    PubMed  CAS  Google Scholar 

  12. Neal DE, Marsh C, Bennett MK et al (1985) Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet 16:366–368

    Article  Google Scholar 

  13. De Jong KP, Stellema R, Karrenbeld A et al (1998) Clinical relevance of transforming growth factor alpha, epidermal growth factor receptor, p53, and Ki67 in colorectal liver metastases and corresponding primary tumors. Hepatology 28:971–979

    Article  PubMed  Google Scholar 

  14. Hemming AW, Davis NL, Kluftinger A et al (1992) Prognostic markers of colorectal cancer: an evaluation of DNA content, epidermal growth factor receptor, and Ki-67. J Surg Oncol 51:147–152

    Article  PubMed  CAS  Google Scholar 

  15. Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  16. Yuan F, Chen Y, Dellian M et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  PubMed  CAS  Google Scholar 

  17. Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    Article  PubMed  CAS  Google Scholar 

  18. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi Y, Kitadai Y, Bucana CD et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    PubMed  CAS  Google Scholar 

  20. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors (Review). Nat Med 5:1359–1364

    Article  PubMed  CAS  Google Scholar 

  21. Kuwai T, Kitadai Y, Tanaka S et al (2003) Expression of hypoxia-inducible factor-1 alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer 105:176–181

    Article  PubMed  CAS  Google Scholar 

  22. Ikeda N, Adachi M, Taki T et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79:1553–1563

    Article  PubMed  CAS  Google Scholar 

  23. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  PubMed  CAS  Google Scholar 

  24. Thaker PH, Yazici S, Nilsson MB et al (2005) Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptor. Clin Cancer Res 11:4923–4933

    Article  PubMed  CAS  Google Scholar 

  25. Strohmeyer D, Rossing C, Bauerfeind A et al (2000) Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. Prostate 45:216–224

    Article  PubMed  CAS  Google Scholar 

  26. Traxler P, Allegrini PR, Brandt R et al (2004) AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64:4931–4941

    Article  PubMed  CAS  Google Scholar 

  27. Yokoi K, Thaker PH, Yazici S et al (2005) Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res 65:3716–3725

    Article  PubMed  CAS  Google Scholar 

  28. Yazici S, Kim SJ, Busby JE et al (2005) Dual inhibition of the epidermal growth factor and vascular endothelial growth factor phosphorylation for antivascular therapy of human prostate cancer in the prostate of nude mice. Prostate 65:203–215

    Article  PubMed  CAS  Google Scholar 

  29. Kim SJ, Uehara H, Yazici S et al (2005) Modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res 65:3707–3715

    Article  PubMed  CAS  Google Scholar 

  30. Yokoi K, Sasaki T, Bucana CD et al (2005) Simultaneous inhibition of EGFR, VEGFR, and platelet-derived growth factor receptor signaling combined with gemcitabine produces therapy of human pancreatic carcinoma and prolongs survival in an orthotopic nude mouse model. Cancer Res 65:10371–10380

    Article  PubMed  CAS  Google Scholar 

  31. Kitadai Y, Sasaki T, Kuwai T et al (2006) Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer 119:2567–2574

    Article  PubMed  CAS  Google Scholar 

  32. Lindmark G, Sundberg C, Glimelius B et al (1993) Stromal expression of platelet-derived growth factor beta-receptor and platelet-derived growth factor B-chain in colorectal cancer. Lab Invest 69:682–689

    PubMed  CAS  Google Scholar 

  33. Sundberg C, Ljungstrom M, Lindmark G et al (1993) Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol 143:1377–1388

    PubMed  CAS  Google Scholar 

  34. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  35. Radinsky R, Fidler IJ (1992) Regulation of tumor cell growth at organ-specific metastases. In Vivo 6:325–331

    PubMed  CAS  Google Scholar 

  36. Risau W, Drexler H, Mironov V et al (1992) Platelet-derived growth factor is angiogenic in vivo. Growth Factors 7:261–266

    Article  PubMed  CAS  Google Scholar 

  37. Ostman A (2004) PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 15:275–286

    Article  PubMed  CAS  Google Scholar 

  38. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    PubMed  CAS  Google Scholar 

  39. Pietras K, Rubin K, Sjoblom T et al (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62:5476–5484

    PubMed  CAS  Google Scholar 

  40. Buchdunger E, Cioffi CL, Law N et al (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 295:139–145

    PubMed  CAS  Google Scholar 

  41. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  PubMed  CAS  Google Scholar 

  42. Kitadai Y, Sasaki T, Kuwai T et al (2006) Inhibition of reactive stroma by platelet-derived growth factor tyrosine kinase inhibitor Imatinib reduces growth and metastasis of human colon carcinoma. Am J Pathol 169:2054–2065

    Article  PubMed  CAS  Google Scholar 

  43. Kim SJ, Uehara H, Yazici S et al (2006) Targeting platelet-derived growth factor receptor on endothelial cells of multidrug-resistant prostate cancer. J Natl Cancer Inst 98:783–793

    Article  PubMed  CAS  Google Scholar 

  44. Nakamura T, Kuwai T, Kitadai Y et al (2007) Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res 67:7597–7604

    Article  PubMed  CAS  Google Scholar 

  45. Kuwai T, Nakamura T, Kim SJ et al (2008) Intratumoral heterogeneity for expression of tyrosine kinase growth factor receptors in human colon cancer surgical specimens and orthotopic tumors. Am J Pathol 172:358–366

    Article  PubMed  Google Scholar 

  46. Morikawa K, Walker SM, Jessup JM, Fidler IJ (1988) In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinoma implanted into nude mice. Cancer Res 48:1943–1948

    PubMed  CAS  Google Scholar 

  47. Kim SJ, Uehara H, Karashima T et al (2003) Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen- independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res 9:1200–1210

    PubMed  CAS  Google Scholar 

  48. Ciardiello F, Bianco R, Caputo R et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to anti-epidermal growth factor receptor therapy. Clin Cancer Res 10:784–793

    Article  PubMed  CAS  Google Scholar 

  49. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited (Timeline). Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  50. Langley RR, Fan D, Tsan RZ et al (2004) Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res 64:3727–3730

    Article  PubMed  CAS  Google Scholar 

  51. Busby JE, Kim SJ, Yazici S et al (2006) Therapy of multidrug resistant human prostate tumors in the prostate of nude mice by simultaneous targeting of the epidermal growth factor receptor and vascular endothelial growth factor receptor on tumor-associated endothelial cells. Prostate 66:1788–1798

    Article  PubMed  CAS  Google Scholar 

  52. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch (Review). Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  53. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  54. Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Cancer Center Support Core Grant CA16672 and SPORE in Prostate Cancer Grant CA902701 from the National Cancer Institute, National Institutes of Health. We thank Vickie J. Williams for editorial review and Lola Lopez for expert assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaiah J. Fidler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwai, T., Nakamura, T., Sasaki, T. et al. Targeting the EGFR, VEGFR, and PDGFR on colon cancer cells and stromal cells is required for therapy. Clin Exp Metastasis 25, 477–489 (2008). https://doi.org/10.1007/s10585-008-9153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9153-7

Keywords

Navigation