Skip to main content

Advertisement

Log in

MRI Detection of Early Bone Metastases in B16 Mouse Melanoma Models

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone metastasis causes significant morbidity in cancer patients, including bone pain, pathologic fractures, nerve compression syndrome, and hypercalcemia. Animal models are utilized to study the pathogenesis of skeletal metastases and to evaluate potential therapeutic agents. Previously published methods for imaging bone metastasis in rodent models have focused on identifying advanced stage metastasis using simple X-rays. Here we report MRI as a method for detecting early bone metastases in mouse models in vivo. B16 mouse melanoma cells were injected into the left cardiac ventricle of C57BL/6 mice and magnetic resonance (MR) images were obtained of the left leg following the development of metastatic disease, when tumor associated bone destruction was histologically present but not visible by X-ray. T1 and T2 relaxation times of bone marrow were measured in healthy control mice and B16 melanoma tumor-bearing mice. Mean T2 values for normal marrow were 28 ms (SD 5) and for diseased bone marrow were 41 ms (SD 3). T2 relaxation time of diseased bone marrow is significantly longer than that of normal bone marrow (P < 0.0001) and can be used as a marker of early bone metastases. These studies demonstrate that MR imaging can detect bone marrow metastases in small animals prior to development of cortical bone loss identified by X-ray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modification of Eagle’s Medium

FOV:

field of view

Gd-DTPA:

gadolinium diethylenetriamine pentaacetic acid, standard MRI contrast agent

GE:

gradient echo

H&E:

hematoxylin and eosin

MR:

magnetic resonance

MRI:

magnetic resonance imaging

NMR:

nuclear magnetic resonance

ROI:

region of interest

SD:

standard deviation

SE:

spin echo

TE:

echo time, imaging parameter

TR:

time to relaxation, imaging parameter

TRAP:

tartrate resistant acid phosphatse, histological stain to identify activated osteoclasts

References

  1. JR Berenson et al. (1996) ArticleTitleEfficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group N Engl J Med 334 IssueID8 88–93 Occurrence Handle10.1056/NEJM199602223340802 Occurrence Handle8531964

    Article  PubMed  Google Scholar 

  2. RE Coleman RD Rubens (1987) ArticleTitleThe clinical course of bone metastases from breast cancer Br J Cancer 55 IssueID1 61–6 Occurrence Handle3814476

    PubMed  Google Scholar 

  3. WF Whitmore (1984) ArticleTitleNatural history of prostatic cancer Prog Clin Biol Res 153 447–54 Occurrence Handle6473407

    PubMed  Google Scholar 

  4. D Tong L Gillick FR Hendrickson (1982) ArticleTitleThe palliation of symptomatic osseous metastases: Final results of the Study by the Radiation Therapy Oncology Group Cancer 50 IssueID5 893–9 Occurrence Handle6178497

    PubMed  Google Scholar 

  5. BG Haubold-Reuter et al. (1993) ArticleTitleThe value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumours: A prospective study Eur J Nucl Med 20 IssueID11 1063–9 Occurrence Handle10.1007/BF00173484 Occurrence Handle8287874

    Article  PubMed  Google Scholar 

  6. S Eustace et al. (1997) ArticleTitleA comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases AJR Am J Roentgenol 169 IssueID6 1655–61 Occurrence Handle9393186

    PubMed  Google Scholar 

  7. LD Rybak DI Rosenthal (2001) ArticleTitleRadiological imaging for the diagnosis of bone metastases Q J Nucl Med 45 IssueID1 53–64 Occurrence Handle11456376

    PubMed  Google Scholar 

  8. FW Flickinger SM Sanal (1994) ArticleTitleBone marrow MRI: Techniques and accuracy for detecting breast cancer metastases Magn Reson Imaging 12 IssueID6 829–35 Occurrence Handle10.1016/0730-725X(94)92023-0 Occurrence Handle7968282

    Article  PubMed  Google Scholar 

  9. PR Algra et al. (1991) ArticleTitleDetection of vertebral metastases: Comparison between MR imaging and bone scintigraphy Radiographics 11 IssueID2 219–32 Occurrence Handle2028061

    PubMed  Google Scholar 

  10. M Sundaram MH McGuire F Schajowicz (1987) ArticleTitleSoft-tissue masses: Histologic basis for decreased signal (short T2) on T2-weighted MR images AJR Am J Roentgenol 148 IssueID6 1247–50 Occurrence Handle3034013

    PubMed  Google Scholar 

  11. WG Totty WA Murphy JK Lee (1986) ArticleTitleSoft-tissue tumors: MR imaging Radiology 160 IssueID1 135–41 Occurrence Handle3715024

    PubMed  Google Scholar 

  12. PE Kish et al. (2001) ArticleTitleMagnetic resonance imaging of ethyl-nitrosourea-induced rat gliomas: A model for experimental therapeutics of low-grade gliomas J Neurooncol 53 IssueID3 243–57 Occurrence Handle10.1023/A:1012222522359 Occurrence Handle11718257

    Article  PubMed  Google Scholar 

  13. M Schabet et al. (1997) ArticleTitleAnimal model of human medulloblastoma: Clinical, magnetic resonance imaging, and histopathological findings after intra-cisternal injection of MHH-MED-1 cells into nude rats Med Pediatric Oncol 29 92–7 Occurrence Handle10.1002/(SICI)1096-911X(199708)29:2<92::AID-MPO5>3.0.CO;2-M

    Article  Google Scholar 

  14. D Martinez et al. (1996) ArticleTitleDisseminated neuroblastoma in the nude rat. A xenograft model of human malignancy Cancer 77 409–19 Occurrence Handle10.1002/(SICI)1097-0142(19960115)77:2<409::AID-CNCR26>3.3.CO;2-F Occurrence Handle8625252

    Article  PubMed  Google Scholar 

  15. R Vertrees et al. (2000) ArticleTitleDevelopment of a human to murine orthotopic xenotransplanted lung cancer model J Invest Surg 13 349–58 Occurrence Handle11202012

    PubMed  Google Scholar 

  16. J Garbow Z Zhang M You (2004) ArticleTitleDetection of primary lung tumors in rodents by magnetic resonance imaging Cancer Res 64 IssueID8 2740–2 Occurrence Handle10.1158/0008-5472.CAN-03-3258 Occurrence Handle15087388

    Article  PubMed  Google Scholar 

  17. K Pulkkanen et al. (2000) ArticleTitleCharacterization of a new animal model for human renal cell carcinoma In Vivo 14 393–400 Occurrence Handle10904872

    PubMed  Google Scholar 

  18. Z Xiao et al. (1999) ArticleTitleCharacterization of a novel transplantable orthotopic rat bladder transitional cell tumour model Br J Cancer 81 638–46 Occurrence Handle10.1038/sj.bjc.6690741 Occurrence Handle10574249

    Article  PubMed  Google Scholar 

  19. S Abdulkadir et al. (2001) ArticleTitleImpaired prostate tumorigenesis in Egr1-deficient mice Nature Med 7 101–7 Occurrence Handle10.1038/83231 Occurrence Handle11135623

    Article  PubMed  Google Scholar 

  20. S-K Song et al. (2002) ArticleTitleImproved Magnetic Resonance Imaging Detection of Prostate Cancer in a Transgenic Mouse Model Cancer Research 62 1555–8 Occurrence Handle11888935

    PubMed  Google Scholar 

  21. Z He et al. (2000) ArticleTitleMagnetic resonance imaging to measure therapeutic response using an orthotopic model of human pancreatic cancer Pancreas 21 69–76 Occurrence Handle10.1097/00006676-200007000-00054 Occurrence Handle10881935

    Article  PubMed  Google Scholar 

  22. M Saini et al. (1999) ArticleTitleA new xenograft model of primary central nervous system lymphoma J Neurooncol 43 IssueID2 153–60 Occurrence Handle10.1023/A:1006234115968 Occurrence Handle10533727

    Article  PubMed  Google Scholar 

  23. H Poptani et al. (1998) ArticleTitleMonitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging Cancer Gene Therapy 5 101–9 Occurrence Handle9570301

    PubMed  Google Scholar 

  24. T Chenevert et al. (2000) ArticleTitleDiffusion magnetic resonance imaging: An early surrogate marker of therapeutic efficacy in brain tumors J Natl Cancer Inst 92 2029–36 Occurrence Handle10.1093/jnci/92.24.2029 Occurrence Handle11121466

    Article  PubMed  Google Scholar 

  25. D Jennings et al. (2002) ArticleTitleEarly response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI Neoplasia 4 255–62 Occurrence Handle10.1038/sj.neo.7900225 Occurrence Handle11988845

    Article  PubMed  Google Scholar 

  26. D Goltzman (1997) ArticleTitleMechanisms of the development of osteoblastic metastases Cancer 80 IssueID8 Suppl 1581–7 Occurrence Handle10.1002/(SICI)1097-0142(19971015)80:8+<1581::AID-CNCR8>3.0.CO;2-N Occurrence Handle9362425

    Article  PubMed  Google Scholar 

  27. D Beauregard et al. (2002) ArticleTitleDifferential sensitivity of two adenocarcinoma xenografts to the anti-vascular drugs combretastatin A4 phosphate and 5,6-dimethylxanthenone-4-acetic acid, assessed using MRI and MRS NMR in Biomed 15 99–105 Occurrence Handle10.1002/nbm.723

    Article  Google Scholar 

  28. M Khandaker et al. (2000) ArticleTitlePrevention of bladder tumor formation in mice by a novel bone marrow-derived factor, reptimed Anticancer Res 20 IssueID1 183–9 Occurrence Handle10769653

    PubMed  Google Scholar 

  29. S Cordel et al. (1998) ArticleTitleInterleukin-2/sodium butyrate treatment cures rats bearing liver tumors after acquired 5-fluorouracil resistance Int J Cancer 78 IssueID6 735–9 Occurrence Handle10.1002/(SICI)1097-0215(19981209)78:6<735::AID-IJC11>3.0.CO;2-6 Occurrence Handle9833767

    Article  PubMed  Google Scholar 

  30. JS Lewis et al. (2002) ArticleTitleCopper-64-pyruvaldehyde-bis(N(4)-methylthiosemicarbazone) for the prevention of tumor growth at wound sites following laparoscopic surgery: Monitoring therapy response with microPET and magnetic resonance imaging Cancer Res 62 IssueID2 445–9 Occurrence Handle11809694

    PubMed  Google Scholar 

  31. M Su et al. (2000) ArticleTitlePrediction of gene therapy-induced tumor size changes by the vascularity changes measured using dynamic contrast-enhanced MRI Mag Reson Imag 28 311–7 Occurrence Handle10.1016/S0730-725X(00)00119-3

    Article  Google Scholar 

  32. L Stegman et al. (2000) ArticleTitleDiffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy Gene Therapy 7 1005–10 Occurrence Handle10.1038/sj.gt.3301199 Occurrence Handle10871748

    Article  PubMed  Google Scholar 

  33. Y Kang et al. (2003) ArticleTitleA multigenic program mediating breast cancer metastasis to bone Cancer Cell 3 IssueID6 537–49 Occurrence Handle10.1016/S1535-6108(03)00132-6 Occurrence Handle12842083

    Article  PubMed  Google Scholar 

  34. F Arguello RB Baggs CN Frantz (1988) ArticleTitleA murine model of experimental metastasis to bone and bone marrow Cancer Res 48 IssueID23 6876–81 Occurrence Handle3180096

    PubMed  Google Scholar 

  35. HZ Wang SJ Riederer JN Lee (1987) ArticleTitleOptimizing the precision in T1 relaxation estimation using limited flip angles Magn Reson Med 5 IssueID5 399–416 Occurrence Handle3431401

    PubMed  Google Scholar 

  36. SJ Bakewell et al. (2003) ArticleTitlePlatelet and osteoclast beta3 integrins are critical for bone metastasis Proc Natl Acad Sci USA 100 IssueID24 14205–10 Occurrence Handle10.1073/pnas.2234372100 Occurrence Handle14612570

    Article  PubMed  Google Scholar 

  37. SA Mirowitz et al. (1994) ArticleTitleMR imaging of bone marrow lesions: Relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images AJR Am J Roentgenol 162 IssueID1 215–21 Occurrence Handle8273669

    PubMed  Google Scholar 

  38. KM Jones et al. (1992) ArticleTitleBone marrow imaging using STIR at 0.5 and 1.5 T Magn Reson Imaging 10 IssueID2 169–76 Occurrence Handle10.1016/0730-725X(92)90477-H Occurrence Handle1564986

    Article  PubMed  Google Scholar 

  39. O Tokuda N Hayashi Matsunaga (2004) ArticleTitleMRI of bone tumors: Fast STIR imaging as a substitute for T1-weighted contrast-enhanced fat-suppressed spin-echo imaging J Magn Reson Imaging 19 IssueID4 475–81 Occurrence Handle10.1002/jmri.20031 Occurrence Handle15065172

    Article  PubMed  Google Scholar 

  40. N Beckmann et al. (1995) ArticleTitleNoninvasive 3D MR microscopy as a tool in pharmacological research: Application to a model of rheumatoid arthritis Magn Reson Imaging 13 IssueID7 1013–7 Occurrence Handle10.1016/0730-725X(95)00050-Q Occurrence Handle8583865

    Article  PubMed  Google Scholar 

  41. N Beckmann RP Hof Rudin (2000) ArticleTitleThe role of magnetic resonance imaging and spectroscopy in transplantation: From animal models to man NMR Biomed 13 IssueID6 329–48 Occurrence Handle10.1002/1099-1492(200010)13:6<329::AID-NBM653>3.0.CO;2-W Occurrence Handle11002313

    Article  PubMed  Google Scholar 

  42. P Faure BT Doan JC Beloeil (2003) ArticleTitleIn-vivo high resolution three-dimensional MRI studies of rat joints at 7 T NMR Biomed 16 IssueID8 484–93 Occurrence Handle10.1002/nbm.855 Occurrence Handle14696006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Gauvain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauvain, K.M., Garbow, J.R., Song, SK. et al. MRI Detection of Early Bone Metastases in B16 Mouse Melanoma Models. Clin Exp Metastasis 22, 403–411 (2005). https://doi.org/10.1007/s10585-005-1264-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-005-1264-9

Keywords

Navigation