Skip to main content

Advertisement

Log in

Direct radiative effects of tropospheric aerosols on changes of global surface soil moisture

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A coupled modeling framework including a terrestrial ecosystem model and an atmospheric radiative transfer model is used to evaluate the aerosols’ direct radiative effects on the surface soil moisture in global terrestrial ecosystems during 2003–2010. We conduct two sets of model runs with and without aerosols in a hindcast mode. Comparison analysis indicates that the simulated soil moisture is comparable with other existing products and satellite retrievals. Simulations with aerosol loadings show an increase in the surface soil moisture by 3.8 ± 0.4 % and 4.1 ± 0.5 % during growing seasons (June to September) in temperate and boreal Northern Hemisphere (>10 °N) and the whole year in tropical regions (−10°S~10°N). This positive effect is as large as 30 % in dense-vegetated ecosystems, such as tropical forests and temperate broadleaf evergreen forests. The effect of aerosols on soil moisture varies with local leaf area index and climate, and exhibits seasonal variations. Surface soil moisture is persistently affected by high aerosols loadings in Amazonian tropical forests during drought seasons of 2005 and 2010. This study highlights the importance to consider the aerosols’ effects in impacting the soil moisture dynamics of the global terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albergel C, De Rosnay P, Balsamo G et al (2012) Soil moisture analyses at ECMWF: evaluation using global ground-based in situ observations. J Hydrometeorol 13:1442–1460

    Article  Google Scholar 

  • Al-Yaari A, Wigneron J-P, Ducharne A et al (2014) Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates. Remote Sens Environ 149:181–195

    Article  Google Scholar 

  • Auffhammer M, Ramanathan V, Vincent JR (2006) Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci 103:19668–19672. doi:10.1073/pnas.0609584104

    Article  Google Scholar 

  • Balsamo G, Albergel C, Beljaars A et al (2013) ERA-Interim/Land: a global land water resources dataset. Hydrol Earth Syst Sci Discuss 10:14705–14745

    Article  Google Scholar 

  • Barichivich J, Briffa KR, Myneni R et al (2014) Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens 6:1390–1431

    Article  Google Scholar 

  • Bevan SL, North PRJ, Grey WMF et al (2009) Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. J Geophys Res 114:D09204. doi:10.1029/2008JD011112

    Article  Google Scholar 

  • Biggs TW, Scott CA, Gaur A et al (2008) Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin. Water Resour Res 44:W12415. doi:10.1029/2008WR006847

    Google Scholar 

  • Boer GJ, Flato G, Ramsden D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century. Clim Dyn 16:427–450

    Article  Google Scholar 

  • Carslaw KS, Boucher O, Spracklen DV et al (2010) A review of natural aerosol interactions and feedbacks within the earth system. Atmos Chem Phys 10:1701–1737

    Article  Google Scholar 

  • Chen M (2013) Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics. Proquest Digital Dissertations, Doctor of Philosophy Dep., Purdue Univ., West Lafayette, Ind

  • Chen M, Zhuang Q (2014) Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus B 66:21808

    Article  Google Scholar 

  • Chen M, Zhuang Q, He Y (2014) An efficient method of estimating downward solar radiation based on the MODIS observations for the use of land surface modeling. Remote Sens 6:7136–7157

    Article  Google Scholar 

  • Cook BI, Bonan GB, Levis S (2006) Soil moisture feedbacks to precipitation in southern Africa. J Clim 19:4198–4206

    Article  Google Scholar 

  • Costantino L, Bréon F (2010) Analysis of aerosol-cloud interaction from multi-sensor satellite observations. Geophys Res Lett 37:L11801. doi:10.1029/2009GL041828

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  • Dai Y, Dickinson RE, Wang Y-P (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17:2281–2299

    Article  Google Scholar 

  • Desboeufs KV, Sofikitis A, Losno R et al (2005) Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 58:195–203. doi:10.1016/j.chemosphere.2004.02.025

    Article  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi:10.1029/2007GL030000

    Article  Google Scholar 

  • Dorigo WA, Gruber A, De Jeu RAM et al (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens Environ 162:380–395

    Article  Google Scholar 

  • Durre I, Wallace JM, Lettenmaier DP (2000) Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J Clim 13:2641–2651

    Article  Google Scholar 

  • Ek MB, Holtslag AAM (2004) Influence of soil moisture on boundary layer cloud development. J Hydrometeorol 5:86–99

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Findell KL, Eltahir EAB (2003) Atmospheric controls on soil moisture-boundary layer interactions. Part II: Feedbacks within the continental United States. J Hydrometeorol 4:570–583

    Article  Google Scholar 

  • Gueymard CA (2012) Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol Energy 86:2145–2169

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020

    Article  Google Scholar 

  • Holben BN, Tanré D, Smirnov A et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res Atmos 106:12067–12097. doi:10.1029/2001JD900014

    Article  Google Scholar 

  • Huang Y, Chameides WL, Dickinson RE (2007) Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J Geophys Res 112:D03212. doi:10.1029/2006JD007114

    Article  Google Scholar 

  • Jaeger EB, Seneviratne SI (2011) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36:1919–1939

    Article  Google Scholar 

  • Jaeger EB, Stöckli R, Seneviratne SI (2009) Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM. J Geophys Res 114:D17106. doi:10.1029/2008JD011658

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • King MD, Menzel WP, Kaufman YJ et al (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. Geosci Remote Sens IEEE Trans 41:442–458

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z et al (2004) Regions of strong coupling between soil moisture and precipitation. Science (80-) 305:1138–1140

    Article  Google Scholar 

  • Levy RC, Remer LA, Martins JV et al (2005) Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS. J Atmos Sci 62:974–992

    Article  Google Scholar 

  • Levy RC, Remer LA, Kleidman RG et al (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL et al (2011) The 2010 amazon drought. Science (80-) 331

  • Liepert BG (2004) Can aerosols spin down the water cycle in a warmer and moister world? Geophys Res Lett. doi:10.1029/2003gl019060

    Google Scholar 

  • Liu S, Chen M, Zhuang Q (2014) Aerosol effects on global land surface energy fluxes during 2003–2010. Geophys Res Lett 41:7875–7881

    Article  Google Scholar 

  • Loew A, Stacke T, Dorigo W et al (2013) Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies. Hydrol Earth Syst Sci 17:3523–3542

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M et al (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849–851

    Article  Google Scholar 

  • Mahowald N (2011) Aerosol indirect effect on biogeochemical cycles and climate. Science (80-) 334:794–796

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G et al (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:GB4025. doi:10.1029/2004GB002402

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J et al (2008) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM et al (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi:10.1029/2011GL047436

    Article  Google Scholar 

  • Matsui T, Beltrán‐Przekurat A, Niyogi D et al (2008) Aerosol light scattering effect on terrestrial plant productivity and energy fluxes over the eastern United States. J Geophys Res 113:D14S14. doi:10.1029/2007JD009658

    Article  Google Scholar 

  • Muñoz AA, Barichivich J, Christie DA et al (2014) Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: linking tree rings with satellite observations of soil moisture. Aust Ecol 39:158–169

    Article  Google Scholar 

  • Murthy BS, Latha R, Kumar M, Mahanti NC (2014) Effect of aerosols on evapo-transpiration. Atmos Environ 89:109–118

    Article  Google Scholar 

  • Niyogi D, Chang H, Saxena VK et al (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophys Res Lett 31:L20506. doi:10.1029/2004GL020915

    Article  Google Scholar 

  • Ohmura A, Gilgen H, Hegner H et al (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  • Péré JC, Mallet M, Pont V, Bessagnet B (2011) Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: a modeling study. J Geophys Res 116:D23119. doi:10.1029/2011JD016240

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA et al (2003) The MODIS cloud products: algorithms and examples from Terra. Geosci Remote Sens IEEE Trans 41:459–473

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science (80-) 294:2119–2124. doi:10.1126/science.1064034

    Article  Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G et al (2000) The global soil moisture data bank. Bull Am Meteorol Soc 81:1281–1299

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science (80-) 298:1410–1411

    Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB et al (2008) Flood or drought: how do aerosols affect precipitation? Science (80-) 321:1309–1313

    Article  Google Scholar 

  • Schaaf CB, Gao F, Strahler AH et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148. doi:10.1016/S0034-4257(02)00091-3

    Article  Google Scholar 

  • Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos 118:4025–4048

    Article  Google Scholar 

  • Seneviratne SI, Stöckli R (2008) The role of land–atmosphere interactions for climate variability in Europe. Clim Var Extrem Dur Past 100:179–193

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19:3088–3111. doi:10.1175/JCLI3790.1

    Article  Google Scholar 

  • Steiner AL, Mermelstein D, Cheng SJ et al (2013) Observed impact of atmospheric aerosols on the surface energy budget. Earth Interact 17:1–22

    Article  Google Scholar 

  • Stephens GL, Ackerman S, Smith EA (1984) A shortwave parameterization revised to improve cloud absorption. J Atmos Sci 41:687–690

    Article  Google Scholar 

  • Szczypta C, Calvet J-C, Maignan F et al (2014) Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts. Geosci Model Dev 7:931–946

    Article  Google Scholar 

  • Taylor CM, Ellis RJ (2006) Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys Res Lett 33:L03404. doi:10.1029/2005GL025252

    Article  Google Scholar 

  • Taylor CM, de Jeu RAM, Guichard F et al (2012) Afternoon rain more likely over drier soils. Nature 489:423–426

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323. doi:10.1175/2008BAMS2634.1

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi:10.5194/acp-10-11707-2010

    Article  Google Scholar 

  • Wang K, Dickinson RE, Liang S (2008) Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration. Geophys Res Lett 35:L10401. doi:10.1029/2008GL034167

    Article  Google Scholar 

  • Western AW, Zhou S-L, Grayson RB et al (2004) Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J Hydrol 286:113–134

    Article  Google Scholar 

  • Yu H, Kaufman YJ, Chin M et al (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666. doi:10.5194/acp-6-613-2006

    Article  Google Scholar 

  • Zeng N, Yoon J-H, Marengo JA et al (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3:14002

    Article  Google Scholar 

  • Zhang J, Wang W, Wu L (2009) Land-atmosphere coupling and diurnal temperature range over the contiguous United States. Geophys Res Lett 36:L06706. doi:10.1029/2009GL037505

    Google Scholar 

Download references

Acknowledgements

We acknowledge that the model forcing data for this study are provided by Land Surface Hydrology Research Group at Princeton University. This research is funded to Q.Z. by the NASA Land Use and Land Cover Change program (NASA-NNX09A126G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-102891 and NSF-0919331), NSF Carbon and Water in the Earth Program (NSF-0630319) and the NSF CDI Type II project (IIS-1028291)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianlai Zhuang.

Additional information

Shaoqing Liu and Min Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 217 kb)

Figure S2

(DOCX 351 kb)

Figure S3

(DOCX 340 kb)

Figure S4

(DOCX 86 kb)

Figure S5

(DOCX 677 kb)

Figure S6

(DOCX 485 kb)

Figure S7

(DOCX 1363 kb)

Figure S8

(DOCX 296 kb)

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, M. & Zhuang, Q. Direct radiative effects of tropospheric aerosols on changes of global surface soil moisture. Climatic Change 136, 175–187 (2016). https://doi.org/10.1007/s10584-016-1611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1611-7

Keywords

Navigation