Skip to main content

Advertisement

Log in

Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper assesses future climate changes over East and South Asia using a regional climate model (RegCM4) with a 50 km spatial resolution. To evaluate the model performance, RegCM4 is driven with “perfect boundary forcing” from the reanalysis data during 1970–1999 to simulate the present day climate. The model performs well in reproducing not only the mean climate and seasonality but also most of the chosen indicators of climate extremes. Future climate changes are evaluated based on two experiments driven with boundary forcing from the European-Hamburg general climate model (ECHAM5), one for the present (1970–1999) and one for the SRES A1B future scenario (2070–2099). The model predicts an annual temperature increase of about 3°–5° (smaller over the ocean and larger over the land), and an increase of annual precipitation over most of China north of 30°N and a decrease or little change in the rest of China, India and Indochina. For temperature-related extreme indicators in the future, the model predicts a generally longer growing season, more hot days in summer, and less frost days in winter. For precipitation-related extremes, the number of days with more than 10 mm of rainfall is predicted to increase north of 30°N and decrease in the south, and the maximum five-day rainfall amount and daily intensity will increase across the whole model domain. In addition, the maximum number of consecutive dry days is predicted to increase over most of the model domain, south of 40°N. Most of the Yangtze River Basin in China stands out as “hotspots” of extreme precipitation changes, with the strongest increases of daily rain intensity, maximum five-day rain amount, and the number of consecutive dry days, suggesting increased risks of both floods and droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akio K, Masahiro H, Yukkimasa A, Kenji K (2005) Future projections of precipitation characteristics in East Asia simulated by the MRI CGCM2. Adv Atmos Sci 22:467–478. doi:10.1007/BF02918481

    Article  Google Scholar 

  • Anderson CJ, Arritt RW, Kain JS (2007) An alternative mass flux profile in the Kain-Fritsch convective parameterization and its effects in seasonal precipitation. J Hydrometeorol 8:1128–1140. doi:10.1175/JHM624.1

    Article  Google Scholar 

  • Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global Planet Change 57:83–95. doi:10.1016/j.gloplacha.2006.11.002

    Article  Google Scholar 

  • Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dynam 8:225–239. doi:10.1007/BF00198617

    Article  Google Scholar 

  • Chen HP, Sun JQ, Chen XL and Zhou W (2010) CGCM projections of heavy rainfall events in China. Int J Climatol 31: n/a. doi: 10.1002/joc.2278

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Ding YH, Shi XL, Liu YM et al (2006) Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested Regional Climate Model (RegCM_NCC). Part 1: sensitivity study. Adv Atmos Sci 23:323–341. doi:10.1007/s00376-006-0323-8

    Article  Google Scholar 

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk Island, Part 2: interpolation of rainfall data. J Hydrol 208:187–193. doi:10.1016/S0022-1694(98)00155-3

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  Google Scholar 

  • Elguindi N, Bi XQ and Giorgi F et al. (2011) Regional climatic model RegCM user mannual version 4.1, The Abdus Salam International Centre for Theoretical Physics Strada Costiera, Trieste

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329. doi:10.1175/1520-0469(1991) 048<2313:ASFRCC>2.0.CO;2

    Article  Google Scholar 

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782. doi:10.1175/1520-0469(1999) 056<1766:DAEOAC>2.0.CO;2

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth cnetury. Climate Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Gao X, Xu Y, Zhao Z et al (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi:10.1007/s00704-005-0214-4

    Article  Google Scholar 

  • Gao X, Shi Y, Song R et al (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86. doi:10.1007/s00703-008-0296-5

    Article  Google Scholar 

  • Gao X, Shi Y and Zhang DF et al (2011) Uncertainties of monsoon precipitation projection over China: results from two high resolution RCM simulations. Clim Res In Review

  • Gillett NP, Zwiers FW, Weaver AJ et al (2002) Detecting anthropogenic influence with a multi-model ensemble. Geophys Res Lett 29:1970–1973. doi:10.1029/2002GL015836

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate change form AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method. J Climate 15:1141–1158. doi:10.1175/1520-0442(2002) 015<1141:COAURA>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Shields C (1999) Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res 104:6353–6375. doi:10.1029/98JD01164

    Article  Google Scholar 

  • Giorgi F, Hewitson B and Christensen J et al (2001) ‘Regional climate change information-Evaluation and projections’. In: Houghton JTEA (ed) Climate change 2001: the scientific basis, Cambridge, pp 583–683

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin 58:175–183

    Google Scholar 

  • Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011a) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi:10.1175/2011JCLI3979.1

    Article  Google Scholar 

  • Giorgi F et al (2011b) RegCM4: model description and illustrative basic performance over selected CORDEX domains. Submitted to Clim Res

  • IPCC (2000) IPCC sepcial report on emissions scenario: summary for policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical basis. Contribution of working group 1 to the fourth assessment report of the IPCC. Cambridge University Press, New York

    Google Scholar 

  • Kalnay E, Kanamistu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996) 077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kanamistu M, Ebisuzaki W, Woollen J et al (2002) NCEP-DOE AMIP-II reanalysis (R-2). B Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723. doi:10.1126/science.1090228

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang XB, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate 20:1419–1444. doi:10.1175/JCLI4066.1

    Article  Google Scholar 

  • Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Climate 16:3560–3571. doi:10.1175/1520-0442(2003) 016<3560:COMAOT>2.0.CO;2

    Article  Google Scholar 

  • Kumar KR, Sahai AK, Kumar KK et al (2006) High-resolution climate change scenarios for india for the 21st century. Curr Sci India 90:334–345

    Google Scholar 

  • Leung LR, Zhong SY, Qian YF, Liu YM (2004) Evaluation of regional climate simulations of the 1998 and 1999 East Asian summer monsoon using the GAME/HUBEX observational data. J Meteorol Soc Jpn 82:1695–1713. doi:10.2151/jmsj.82.1695

    Article  Google Scholar 

  • Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35:L08709. doi:10.1029/2007GL032849

    Article  Google Scholar 

  • Liu YX, Li X, Zhang Q, Guo YF et al (2010) Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quatern Int 212:57–63. doi:10.1016/j.quaint.2009.01.007

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mo KC, Schemm JK, Juang HMH et al (2005) Impact of model resolution on the prediction of summer precipitation over the United States and Mexico. J Climate 18:3910–3927. doi:10.1175/JCLI3513.1

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (1999) Representing twentieth century space time climate variability. Part 1. Development of a 1961–1990 mean monthly terrestrial climatology. J Climate 12:829–856. doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  • Nitta T, Hu Z (1996) Summer climate variability in China and its association with 500 hPa height and tropical convection. J Meteorol Soc Jpn 74:425–445

    Google Scholar 

  • Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res-Biogeo 113:G1021. doi:10.1029/2007JG000563

    Article  Google Scholar 

  • Rainsanen J, Joelsson R (2001) Changes in average and extreme precipitation in two regional climate model experiments. Tellus A 53:547–566. doi:10.1034/j.1600-0870.2001.00262.x

    Article  Google Scholar 

  • Rauscher SA, Seth A, Qian JH, Camargo SJ (2006) Domain choice in an experimental nested modeling prediction system for South America. Theor Appl Climatol 86:229–246. doi:10.1007/s00704-006-0206-z

    Article  Google Scholar 

  • Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dynam 35:685–711. doi:10.1007/s00382-009-0607-7

    Article  Google Scholar 

  • Rayner NA, Parker DE and Horton EB et al (2006) UKMO - GISST/MOHMATN4/MOHSST6 - Global Ice coverage and SST (1856–2006), NCAS British Atmospheric Data Centre

  • Road J, Chen SC, Kanamistu M (2003) U.S. regional climate simulations and seasonal forecasts. J Geophys Res 108:8606. doi:10.1029/2002JD002232

    Article  Google Scholar 

  • Schiermeier Q (2011) Increased flood risk linked to global warming. Nature 471:316. doi:10.1038/470316a

    Article  Google Scholar 

  • Seth A, Rauscher SA, Rojas M et al (2011) Enhanced spring convective barrier for monsoons in a warmer world? Clim Chang 104:403–414. doi:10.1007/s10584-010-9973-8

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 13(1):79–105. doi:10.1007/s00382-007-0340-z

    Article  Google Scholar 

  • Shi Y, Gao XJ, Zhang DF and Giorgi F (2011) Climate change over the Yarlung Zangbo-Brahmaputra river basin in the 21st century as simulated by a high resolution regional climate model. Quatern Int (In press). doi: 10.1016/j.quaint.2011.01.041

  • Singh GP, Oh JH, Kim JY, Kim OY (2006) Sensitivity of summer monsoon precipitation over East Asia to convective parameterization scheme in RegCM3. SOLA 2:29–32. doi:10.2151/sola.2006-008

    Article  Google Scholar 

  • Spence A, Poortinga W, Butler C, Pidgeon NF (2011) Perceptions of climate change and willingness to save energy related to flood experience. Nat Clim Change 1:46–49. doi:10.1038/nclimate1059

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Climate 19:916–934. doi:10.1175/JCLI3672.1

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. B Am Math Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Google Scholar 

  • Wang GL (2005) Agricultural drought in a future climate: results from fifteen global climate models participating in the Inter-governmental panel for climate change’s 4th assessment. Clim Dynam 25:739–753. doi:10.1007/s00382-005-0057-9

    Article  Google Scholar 

  • Wang GL and Alo CC (2012) Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. Int J Geophys in press

  • Wang GL, Eltahir EAB (2002) Impact of CO2 concentration changes on the biosphere-atmosphere system of West Africa. Global Change Biol 8:1169–1182. doi:10.1046/j.1365-2486.2002.00542.x

    Article  Google Scholar 

  • Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:L9707. doi:10.1029/2005GL022574

    Article  Google Scholar 

  • Wang XD, Zhong Z, Hu YJ, Yuan HH (2010) Effect of lateral boundary scheme on the simulation of tropical cyclone track in regional climate model RegCM3. Asia-Pac J Atmos Sci 46:221–230. doi:10.1007/s13143-010-0019-y

    Article  Google Scholar 

  • Weber E, Stern P (2010) What shapes perceptions of climate change? Wiley interdisciplinary reviews. Climate Change 1:332–342. doi:10.1002/wcc.41

    Google Scholar 

  • Xu C, Shen X, Xu Y (2007) An analysis of climate change in east asia by using the IPCC AR4 simulations. Adv Clim Change Res 3:287–292

    Google Scholar 

  • Xue YK, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB regional climate model. J Clim 20:4172–4193. doi:10.1175/JCLI4239.1

    Article  Google Scholar 

  • Yatagai A, Arakawa O, Kamiguchi K et al (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140. doi:10.2151/sola.2009-035

    Article  Google Scholar 

  • Yu R, Wang B, Zhou T (2004) Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett 31:L22212. doi:10.1029/2004GL021270

    Article  Google Scholar 

  • Zhai PM, Zhang XB, Wan H (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate 18:1096–1107. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

  • Zhai J, Zeng X, Su B (2009) Patterns of dryness/wetness in China before 2050 projected by the ECHAM5 model. Adv Clim Change Res 5:220–225

    Google Scholar 

  • Zhang Y, Kuang X, Guo W, Zhou T (2006) Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys Res Lett 33:L11708. doi:10.1029/2006GL026377

    Article  Google Scholar 

  • Zhang DF, Gao XJ, Ouyang LC, Dong WJ (2008) Simulation of present climate over East Asia by a regional climate model. J Trop Meteorol 14:19–23

    Google Scholar 

  • Ziegler AD, Maurer EP, Sheffield J et al (2005) Detection time for plausible changes in annual precipitation, evapotranspiration, and streamflow in Three Mississippi River Sub-Basins. Clim Chang 72:17–36. doi:10.1007/s10584-005-5379-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (the 973 Program, Grant No. 2010CB951101), the U.S. National Science Foundation (AGS-1049017) and the National Natural Science Foundation of China (Grants No. 50979022 and 40911130507). The authors thank the three anonymous reviewers for their constructive comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, H., Wang, G., Yu, Z. et al. Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Climatic Change 114, 301–317 (2012). https://doi.org/10.1007/s10584-012-0411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0411-y

Keywords

Navigation