Skip to main content

Advertisement

Log in

Elevation gradients of European climate change in the regional climate model COSMO-CLM

Climatic Change Aims and scope Submit manuscript

Abstract

A transient climate scenario experiment of the regional climate model COSMO-CLM is analyzed to assess the elevation dependency of 21st century European climate change. A focus is put on near-surface conditions. Model evaluation reveals that COSMO-CLM is able to approximately reproduce the observed altitudinal variation of 2 m temperature and precipitation in most regions and most seasons. The analysis of climate change signals suggests that 21st century climate change might considerably depend on elevation. Over most parts of Europe and in most seasons, near-surface warming significantly increases with elevation. This is consistent with the simulated changes of the free-tropospheric air temperature, but can only be fully explained by taking into account regional-scale processes involving the land surface. In winter and spring, the anomalous high-elevation warming is typically connected to a decrease in the number of snow days and the snow-albedo feedback. Further factors are changes in cloud cover and soil moisture and the proximity of low-elevation regions to the sea. The amplified warming at high elevations becomes apparent during the first half of the 21st century and results in a general decrease of near-surface lapse rates. It does not imply an early detection potential of large-scale temperature changes. For precipitation, only few consistent signals arise. In many regions precipitation changes show a pronounced elevation dependency but the details strongly depend on the season and the region under consideration. There is a tendency towards a larger relative decrease of summer precipitation at low elevations, but there are exceptions to this as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. For clarity, we will reserve the terms elevation/altitude dependency and elevation/altitude gradient for the altitudinal dependency of near-surface parameters, while the term height dependency will be reserved for variations in the free troposphere. Similarly, the term (surface) lapse rate will refer to the elevation dependency of near-surface air temperature as opposed to the environmental lapse rate in the free troposphere. Lapse rates are generally defined as the temperature decrease with elevation/height and hence positive in sign for cooler conditions at higher levels. In contrast, positive precipitation gradients denote an increase of precipitation with height.

  2. As a general rule and unless stated otherwise, we will apply the terms low, medium and high elevation in a relative sense, i.e., with respect to the elevation range covered by each individual sub-domain. For instance, high elevations in sub-domain AL will refer to a different elevation range (> about 1500 m) than high elevations in sub-domain BI (> about 400 m).

References

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(D9):4257. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Appenzeller C, Begert M, Zenklusen E, Scherrer SC (2008) Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Science Tot Env 391:262–268

    Article  Google Scholar 

  • Barry RG (2008) Mountain Weather and Climate. 3 rd edn, Cambridge University Press

  • Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor Appl Climatol 53:231–243

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Brockhaus P (2009) Role and representation of moist convection in a regional climate model. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 18624, 144 pp

  • Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2010) Revisiting Swiss temperature trends 1959–2008. Int J Clim, accepted. doi:10.1002/joc.2260

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–16. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J Roy Meteor Soc 102:405–418

    Google Scholar 

  • Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279

    Article  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 years of climate in the french Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:2487–2512. doi:10.1175/2009JAMC1810.1

    Article  Google Scholar 

  • EEA (2009) Regional climate change and adaptation – The Alps facing the challenge of changing water resources. European Environment Agency Report No. 8/2009, Copenhagen, 143 pp

  • Elsasser H, Bürki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257

    Article  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900

    Article  Google Scholar 

  • Frei C, Davies HC, Gurtz J, Schär C (2000) Climate dynamics and extreme precipitation and flood events in central Europe. Integr Assess 1:281–299

    Article  Google Scholar 

  • Frierson DMW (2006) Robust increases in midlatitude static stability in simulations of global warming. Geophys Res Lett 33:L24816. doi:10.1029/2006GL027504

    Article  Google Scholar 

  • Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the rocky mountains. J Clim 12:230–243

    Article  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. Clim Change 10:288–296

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Hall A (2004) The role of surface Albedo feedback in climate. J Clim 17:1550–1568

    Article  Google Scholar 

  • Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20:615–640

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  • Hiebl J, Auer I, Böhm R, Schöner W, Maugeri M, Lentini G, Spinoni J, Brunetti M, Nanni T, Tadić MP, Bihari Z, Dolinar M, Müller-Westermeier G (2009) A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. Meteorol Z 18(5):507–530. doi:10.1127/0941-2948/2009/0403

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020

    Article  Google Scholar 

  • Houze RA (1993) Cloud Dynamics. Academic Press, San Diego. International Geophysics Series, Volume 53, 570 pp

  • Im E-S, Coppola E, Giorgi F, Bi X (2010) Local effects of climate change over the Alpine region: A study with a high resolution regional climate model with a surrogate climate change signal. Geophys Res Lett 37:L05704. doi:10.1029/2009GL041801

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp

  • Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):1–19. doi:10.1127/0941-2948/2008/0301

    Article  Google Scholar 

  • Kim J (2001) A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2. Geophys Res Lett 28(15):2951–2954

    Article  Google Scholar 

  • Kotlarski S, Block A, Böhm U, Jacob D, Keuler K, Knoche R, Rechid D, Walter A (2005) Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. Adv Geosciences 5:119–125

    Article  Google Scholar 

  • Kotlarski S, Paul F, Jacob D (2010) Forcing a distributed glacier mass balance model with the regional climate model REMO, part I: climate model evaluation. J Clim 23(6):1589–1606. doi:10.1175/2009JCLI2711.1

    Article  Google Scholar 

  • Laternser MC (2002) Snow and avalanche climatology of Switzerland. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14493, 137 pp

  • Leung LR, Ghan SJ (1999) Pacific northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part II: 2xCO2 simulations. J Clim 12:2031–2053

    Article  Google Scholar 

  • López-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol 28:1535–1550

    Article  Google Scholar 

  • Marty C, Philipona R, Fröhlich C, Ohmura A (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor Appl Climatol 72:137–155

    Article  Google Scholar 

  • Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J Geophys Res 115:D14122. doi:10.1029/2009JD013493

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, p 599

    Google Scholar 

  • Pepin N, Losleben M (2002) Climate change in the Colorado rocky mountains: free air versus surface temperature trends. Int J Climatol 22:311–329. doi:10.1002/joc.740

    Article  Google Scholar 

  • Prömmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int J Climatol 30:760–773. doi:10.1002/joc.1916

    Google Scholar 

  • Richner H, Phillips PD (1984) A comparison of temperature from mountaintops and the free atmosphere – their diurnal variation and mean difference. Mon Weather Rev 112(7):1328–1340

    Article  Google Scholar 

  • Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671. doi:10.1146/annurev.earth.33.092203.122541

    Article  Google Scholar 

  • Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16:1032–1046

    Article  Google Scholar 

  • Salathé EP, Leung LR, Qian Y, Zhang Y (2010) Regional climate model projections for the State of Washington. Clim Change 102:51–75. doi:10.1007/s10584-010-9849-y

    Article  Google Scholar 

  • Santer BD et al (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556. doi:10.1126/science.1114867

    Article  Google Scholar 

  • Schär C, Frei C, Lüthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669–672. doi:10.1029/96GL00265

    Article  Google Scholar 

  • Schär C, Davies TD, Frei C, Wanner H, Widmann M, Wild M, Davies HC (1998) Current Alpine Climate. In: Cebon P, Dahinden U, Davies HC, Imboden DM, Jäger CC (eds) Views from the Alps: Regional perspectives on climate change. MIT Press, Boston, pp 21–72

    Google Scholar 

  • Schröter D et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337. doi:10.1126/science.1115233

    Article  Google Scholar 

  • Schwarb M (2000) The Alpine Precipitation Climate—Evaluation of a high-resolution analysis scheme using comprehensive rain-gauge data. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 13911, 131 pp

  • Schwarb M, Daly C, Frei C, Schär C (2001) Mean annual and seasonal precipitation throughout the European Alps 1971–1990. In: Hydrological Atlas of Switzerland. Plates 2.6 and 2.7. Swiss Federal Office for Water and Geology, Bern

  • Seidel DJ, Free M (2003) Comaprison of lower-tropospheric temperature climatologies and trends at low and high elevation radiosonde sites. Clim Change 59:53–74

    Article  Google Scholar 

  • Sevruk B (1997) Regional dependency of the precipitation-altitude relationship in the Swiss Alps. Clim Change 36:355–369

    Article  Google Scholar 

  • Smith RB (1979) The influence of mountains on the atmosphere. Adv Geophys 21:87–230

    Article  Google Scholar 

  • Snyder MA, Bell JL, Sloan LC, Duffy PB, Govindasamy B (2002) Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys Res Lett 29(11):9. doi:10.1029/2001GL014431

    Article  Google Scholar 

  • Snyder MA, Sloan LC (2005) Transient future climate over the Western United States using a regional climate model. Earth Interact 9:1–21

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor Atmos Phys 82:75–96

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250. doi:10.1073/pnas.0409902102

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1799

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa BV, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 pp

  • Varney BM (1920) Monthly variations of the precipitation-altitude relation in the Central Sierra Nevada of California. Mon Weather Rev 48(11):648–650

    Article  Google Scholar 

  • Verbunt M, Walser A, Gurtz J, Montani A, Schär C (2007) Probabilistic flood forecasting with a limited-area ensemble prediction system. J Hydrometeorol 8(4):897–909

    Article  Google Scholar 

  • Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586. doi:10.1029/2002JD002810

    Article  Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour Res 43(7):W07447. doi:10.1029/2006WR005653

    Article  Google Scholar 

  • Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27(23):3885–3888

    Article  Google Scholar 

  • Wastl C, Zängl G (2007) Analysis of the climatological precipitation gradient between the Alpine foreland and the northern Alps. Met Z 16(5):541–552

    Article  Google Scholar 

  • Wastl C, Zängl G (2008) Analysis of mountain-valley precipitation differences in the Alps. Met Z 17(3):311–321

    Article  Google Scholar 

  • Weber RO, Talkner P, Stefanicki G (1994) Asymetric diurnal temperature change in the Alpine region. Geophys Res Lett 21(8):673–676

    Article  Google Scholar 

  • Weber RO, Talkner P, Auer I, Böhm R, Gajić-Čapka M, Zaninović K, Brázdil R, Faško P (1997) 20th-Century changes of temperature in the mountain regions of central Europe. Clim Change 36:327–344

    Article  Google Scholar 

  • Weischet W (1979) Einführung in die Allgemeine Klimatologie, 2nd edn. Teubner, Stuttgart

    Google Scholar 

  • Wild M, Ohmura A, Cubasch U (1997) GCM-simulated surface energy fluxes in climate change experiments. J Clim 10:3093–3110

    Article  Google Scholar 

  • Wilks DS (2006) Statistical Methods in the Atmospheric Sciences. Second Edition. International Geophysics Series Vol. 91. Elsevier Inc., 627 pp

  • You Q, Kang S, Pepin N, Flügel W-A, Yan Y, Behrawan H, Huang J (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Change 71:124–133. doi:10.1016/j.gloplacha.2010.01.020

    Article  Google Scholar 

Download references

Acknowledgements

The COSMO-CLM simulations analyzed have been conducted at the Swiss National Supercomputing Centre (CSCS). We are indebted to the COSMO and CLM communities for providing access to and support for the model, as well as to MeteoSwiss and ECMWF for providing access to the ERA40 data set. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We also acknowledge the E-OBS dataset from the ENSEMBLES project and the data providers in the ECA&D project (http://eca.knmi.nl). Partial funding for this study has been provided by the Swiss National Science Foundation via NCCR Climate. We are thankful to the Center for Climate Systems Modeling (C2SM) for modeling support and to Dr. Tracy Ewen for her valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kotlarski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotlarski, S., Bosshard, T., Lüthi, D. et al. Elevation gradients of European climate change in the regional climate model COSMO-CLM. Climatic Change 112, 189–215 (2012). https://doi.org/10.1007/s10584-011-0195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0195-5

Keywords

Navigation