Skip to main content
Log in

Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Tandemly repetitive DNA sequences, also named satellite repeats, are major DNA components of heterochromatin and are often organized as long arrays in the pericentromeric, centromeric, and subtelomeric regions of eukaryotic chromosomes. An increasing amount of evidence indicates that transcripts derived from some satellite repeats play important roles in various biological functions. We used a RNA-fluorescence in situ hybridization (RNA-FISH) technique to investigate the transcription of the four well-characterized satellite repeats of maize (Zea mays), including the 180-bp knob repeat, the telomeric (TTTAGGG)n repeat, the 156-bp centromeric repeat CentC, and a 350-bp subtelomeric repeat. Although few transcripts derived from these four repeats were found in the expressed sequence tag and RNA-seq databases, RNA-FISH consistently detected the transcripts from three of the four repeats on interphase nuclei, suggesting that the transcripts from the three repeats are largely integrated into chromatin. The transcripts from the knob and telomeric repeats were mapped to the related DNA loci. In contrast, the transcripts from the CentC repeats were mainly localized to the nucleolus, although nucleoplasmic CentC transcripts were also detectable. The nucleolus and nuclear RNAs appeared to be important for the nuclear localization for at least one centromeric protein, Mis12. We demonstrate that RNA-FISH is a powerful tool to assess the level of transcription as well as to physically map the nuclear locations of the transcripts derived from satellite repeats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CENP:

Centromere protein

EST:

Expressed sequence tags

FISH:

Fluorescence in situ hybridization

TERRA:

Telomeric repeat-containing RNA

References

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci 95:13073–13078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res 23:463–477

    Article  CAS  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Nat Acad Sci USA 103:8709–8714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr B, Burr FA, Matz EC, Romeroseverson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, et al. (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Nat Acad Sci USA 109:1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    Article  CAS  PubMed  Google Scholar 

  • Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, et al. (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZK, Stupar RM, Gu MH, Jiang JM (2001) A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110:24–31

    Article  CAS  PubMed  Google Scholar 

  • Chun Y, Park B, Koh W, Lee S, Cheon Y, et al. (2011) New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chemi 286:42758–42769

    Article  CAS  Google Scholar 

  • Cox KH, Deleon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502

    Article  CAS  PubMed  Google Scholar 

  • Du YQ, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single stranded RNA. PLoS Genet 6:e1000835

    Article  PubMed  PubMed Central  Google Scholar 

  • Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosom Res 13:469–479

    Article  CAS  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, et al. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gall JG, Atherton DD (1974) Satellite DNA sequences in Drosophila virilis. J Mol Biol 85:633–664

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenetic Genome Res 146:153–170

    Article  CAS  Google Scholar 

  • Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chemi 265:17753–17758

    CAS  Google Scholar 

  • Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Liu J, Torres GA, Zhang HQ, Jiang JM, et al. (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosom Res 21:5–13

    Article  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Highett MI, Beven AF, Shaw PJ (1993) Localization of 5S genes and transcripts in Pisum sativum nuclei. J Cell Sci 105:1151–1158

    CAS  PubMed  Google Scholar 

  • Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, et al. (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Mongelard F, RobertNicoud M, Vourch C (1997) Optimization of nuclear transcript detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors. J Histochemi & Cytochemi 45:1585–1592

    Article  CAS  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, et al. (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloc A, Zaratiegui M, Nora E, Martienssen R (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HR, Neumann P, Macas J, Jiang JM (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520

    Article  CAS  PubMed  Google Scholar 

  • Li XX, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang F, Zhu J, He SB, Li LJ (2009) Characterization of a tandemly repeated subtelomeric sequence with inverted telomere repeats in maize. Genome 52:286–293

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle-regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maison C, Bailly D, Peters AHFM, Quivy JP, Roche D, et al. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    Article  PubMed  Google Scholar 

  • Majerova E, Fojtova M, Mozgova I, Bittova M, Fajkus J (2011) Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol Biol 77:371–380

    Article  CAS  PubMed  Google Scholar 

  • May BP, Lippman ZB, Fang YD, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:705–714

    Article  CAS  Google Scholar 

  • McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629

    Article  CAS  PubMed  Google Scholar 

  • McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337

    Article  CAS  PubMed  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Nat Acad Sci USA 78:4490–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9:587–595

    Article  CAS  PubMed  Google Scholar 

  • Pontes O, Li CF, Nunes PC, Haag J, Ream T, et al. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  CAS  PubMed  Google Scholar 

  • Pontes O, Costa-Nunes P, Vithayathil P, Pikaard CS (2009) RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant 2:700–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, et al. (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638

    Article  CAS  PubMed  Google Scholar 

  • Rivin CJ, Cullis CA, Walbot V (1986) Evaluating quantitative variation in the genome of Zea mays. Genetics 113:1009–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, et al. (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  CAS  PubMed  Google Scholar 

  • Sippel AE, Hynes N, Groner B, Schutz G (1977) Frequency distribution of messenger sequences within polysomal messenger RNA and nuclear RNA from rat liver. Eur J Biochem 77:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, et al. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, et al. (2010) siRNA-mediated methylation of I telomeres. PLoS Genet 6:e1000986

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, et al. (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TY, Wang YX, Wu R (1994) Transcribed repetitive DNA-sequences in telomeric regions of rice (Oryza sativa). Plant Mol Biol 26:363–375

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, et al. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants IOS-0922703 and IOS-1444514 from the National Science Foundation to J.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Jiang.

Additional information

Responsible Editor: Hans de Jong

Electronic supplementary material

ESM 1

(PDF 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, DH., Zhao, H. & Jiang, J. Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Res 24, 467–480 (2016). https://doi.org/10.1007/s10577-016-9537-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9537-5

Keywords

Navigation