Skip to main content
Log in

Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

For several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes. It is thought that the association between cancer and satncRNAs is mostly due to the influence of these transcripts in the genome instability, a hallmark of cancer. The few reports on satellite DNA transcription in cancer contexts point to its overexpression; however, this scenario may be far more complex, variable, and influenced by a number of factors and the exact role of satncRNAs in the oncogenic process remains poorly understood. The greater is the knowledge on the association of satncRNAs with cancer, the greater would be the opportunity to assist cancer treatment, either by the design of effective therapies targeting these molecules or by using them as biomarkers in cancer diagnosis, prognosis, and with predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

CPC:

Chromosome passenger complex

CT:

Centromeric

dTALEs:

Designer transcription activator-like effectors

HP1:

Heterochromatin protein 1

HSF1:

Heat shock factor 1

lncRNAs:

Long non-coding RNAs

mRNAs:

Messenger RNAs

ncRNAs:

Non-coding RNAs

ORF:

Open reading frame

PCT:

Pericentromeric

RIP:

RNA immunoprecipitation

RNA-FISH:

RNA fluorescence in situ hybridization

RT-qPCR:

Reverse transcriptase quantitative polymerase chain reaction

satDNA:

Satellite DNA

satncRNAs:

Satellite non-coding RNAs

siRNAs:

Small interfering RNAs

TonEBF:

Tonicity enhancer-binding protein

TRAIN:

Transcription of repeats activates interferon

References

  • Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126(1-2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Aldrup-Macdonald ME, Sullivan BA (2014) The past, present, and future of human centromere genomics. Genes (Basel) 5(1):33–50

    Google Scholar 

  • Alexiadis V, Ballestas ME, Sanchez C et al (2007) RNAPol-ChIP analysis of transcription from FSHD-linked tandem repeats and satellite DNA. Biochim Biophys Acta 1769(1):29–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almouzni G, Probst AV (2011) Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2(5):332–338

    Article  PubMed  Google Scholar 

  • Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39(Database issue):D146–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arutyunyan A, Stoddart S, Yi SJ et al (2012) Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells. BMC Genomics 13:418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655

    Article  CAS  PubMed  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci U S A 103(23):8709–8714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JD, Mitchell SE, O’Neill RJ (2012) Making a long story short: noncoding RNAs and chromosome change. Heredity (Edinb) 108(1):42–49

    Article  CAS  Google Scholar 

  • Bulut-Karslioglu A, Perrera V, Scaranaro M et al (2012) A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19(10):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Burgess DJ (2011) Chromosome instability: tumorigenesis via satellite link. Nat Rev Cancer 11(3):158

    Article  CAS  PubMed  Google Scholar 

  • Carone DM, Longo MS, Ferreri GC et al (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Chaves R, Louzada S, Meles S, Wienberg J, Adega F (2012) Praomys tullbergi (Muridae, Rodentia) genome architecture decoded by comparative chromosome painting with Mus and Rattus. Chromosome Res 20(6):673–683

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wang Z, Wang D et al (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(Database issue):D983–986

  • Cohen AK, Huh TY, Helleiner CW (1973) Transcription of satellite DNA in mouse L-cells. Can J Biochem 51(5):529–532

    Article  CAS  PubMed  Google Scholar 

  • Crea F, Watahiki A, Quagliata L et al (2014) Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 5(3):764–774

    Article  PubMed Central  PubMed  Google Scholar 

  • Da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13(1):97–114

    PubMed Central  PubMed  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12(2):247–256

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng G, Sui G (2013) Noncoding RNA in oncogenesis: a new era of identifying key players. Int J Mol Sci 14(9):18319–18349

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehrlich M (2005) DNA methylation and cancer-associated genetic instability. Adv Exp Med Biol 570:363–392

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1(2):239–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Enukashvily NI, Donev R, Waisertreiger IS, Podgornaya OI (2007) Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 118(1):42–54

    Article  CAS  PubMed  Google Scholar 

  • Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol 90:31–65

    Article  CAS  PubMed  Google Scholar 

  • Eymery A, Callanan M, Vourc’h C (2009) The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int J Dev Biol 53(2-3):259–268

    Article  CAS  PubMed  Google Scholar 

  • Feldstein O, Nizri T, Doniger T et al (2013) The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer 12(1):131

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37(15):5071–5080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frescas D, Guardavaccaro D, Kuchay SM et al (2008) KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 7(22):3539–3547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gent JI, Dawe RK (2012) RNA as a structural and regulatory component of the centromere. Annu Rev Genet 46:443–453

    Article  CAS  PubMed  Google Scholar 

  • Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harel J, Hanania N, Tapiero H, Harel L (1968) RNA replication by nuclear satellite DNA in different mouse cells. Biochem Biophys Res Commun 33(4):696–701

    Article  CAS  PubMed  Google Scholar 

  • Hauptman N, Glavac D (2013) MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol 47(4):311–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19(R2):R152–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson K, Yu MC, Arakawa K et al (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3(12):1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Jenjaroenpun P, Kremenska Y, Nair VM et al (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. Peer J 1, e201

    Article  PubMed Central  PubMed  Google Scholar 

  • Jolly C, Metz A, Govin J et al (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164(1):25–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S (2001) DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer 91(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Karapetyan AR, Buiting C, Kuiper RA, Coolen MW (2013) Regulatory roles for long ncRNA and mRNA. Cancers (Basel) 5(2):462–490

    Article  CAS  Google Scholar 

  • Kondratova VN, Botezatu IV, Shelepov VP, Likhtenshtein AV (2014) Transcripts of satellite DNA in blood plasma: probable markers of tumor growth. Mol Biol (Mosk) 48(6):999–1007

    Article  CAS  Google Scholar 

  • Kononenko AV, Bansal R, Lee NC et al (2014) A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. Nucleic Acids Res 42(21)

  • Kuhn GC (2015) Satellite DNA transcripts have diverse biological roles in Drosophila. Heredity (Edinb) 115(1):1–2

    Article  CAS  Google Scholar 

  • Leonova KI, Brodsky L, Lipchick B et al (2013) p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci U S A 110(1):E89–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45(8):1895–1910

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Sun L, Song E (2013) Non-coding RNAs regulate tumor cell plasticity. Sci China Life Sci 56(10):886–890

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179(3):411–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu KH, Li W, Liu XH et al (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461

    Article  PubMed Central  PubMed  Google Scholar 

  • Maison C, Bailly D, Roche D et al (2011) SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat Genet 43(3):220–227

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–29

    Article  CAS  PubMed  Google Scholar 

  • McCarthy N (2011) Tumour suppressors: silencing heterochromatin. Nat Rev Cancer 11(11):760

    CAS  PubMed  Google Scholar 

  • Menon DU, Coarfa C, Xiao W, Gunaratne PH, Meller VH (2014) SiRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster. Proc Natl Acad Sci U S A 111(46):16460–16465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A et al (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309(5734):613–617

    Article  CAS  PubMed  Google Scholar 

  • Narayan A, Ji W, Zhang XY et al (1998) Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 77(6):833–838

    Article  CAS  PubMed  Google Scholar 

  • Paco A, Adega F, Mestrovic N, Plohl M, Chaves R (2014) Evolutionary story of a satellite DNA from Phodopus sungorus (Rodentia, Cricetidae). Genome Biol Evol 6(10):2944–2955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409(1-2):72–82

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Mestrovic N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123(4):313–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Probst AV, Okamoto I, Casanova M et al (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19(4):625–638

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Zinn RL, Ohm JE et al (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2(3):e40

    Article  PubMed Central  PubMed  Google Scholar 

  • Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M (1999a) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423(1-2):91–101

    Article  CAS  PubMed  Google Scholar 

  • Qu GZ, Grundy PE, Narayan A, Ehrlich M (1999b) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Quek XC, Thomson DW, Maag JL et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43(Database issue):D168–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. Elife 3:e03254

    Article  PubMed Central  PubMed  Google Scholar 

  • Redis RS, Sieuwerts AM, Look MP et al (2013) CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 4(10):1748–1762

    Article  PubMed Central  PubMed  Google Scholar 

  • Renault S, Rouleux-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29(2):103–111

    Article  CAS  PubMed  Google Scholar 

  • Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207(3):335–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito Y, Kanai Y, Sakamoto M et al (2001) Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33(3):561–568

    Article  CAS  PubMed  Google Scholar 

  • Saksouk N, Simboeck E, Dejardin J (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos S, Chaves R, Adega F, Bastos E, Guedes-Pinto H (2006) Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J Hered 97(2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Scott KC (2013) Transcription and ncRNAs: at the cent(rome)re of kinetochore assembly and maintenance. Chromosome Res 21(6-7):643–651

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc 80(2):227–250

    Article  PubMed  Google Scholar 

  • Shestakova EA, Mansuroglu Z, Mokrani H, Ghinea N, Bonnefoy E (2004) Transcription factor YY1 associates with pericentromeric gamma-satellite DNA in cycling but not in quiescent (G0) cells. Nucleic Acids Res 32(14):4390–4399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43):4577–4587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thanisch K, Schneider K, Morbitzer R et al (2014) Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res 42(6):e38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilman G, Arnoult N, Lenglez S et al (2012) Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics 7(8):903–913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ting DT, Lipson D, Paul S et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331(6017):593–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7(1):102

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD (2013) Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. PLoS One 8(11):e79393

    Article  PubMed Central  PubMed  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6(11):1035–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usakin L, Abad J, Vagin VV et al (2007) Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. Genetics 176(2):1343–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M et al (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36(2):423–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vieira-da-Silva A, Louzada S, Adega F, Chaves R (2015) A high-resolution comparative chromosome Map of Cricetus Cricetus and Peromyscus eremicus reveals the involvement of constitutive heterochromatin in breakpoint regions. Cytogenet Genome Res 145(1):59–67

    Article  PubMed  Google Scholar 

  • Vourc’h C, Biamonti G (2011) Transcription of satellite DNAs in mammals. Prog Mol Subcell Biol 51:95–118

    Article  PubMed  Google Scholar 

  • Walton EL, Francastel C, Velasco G (2014) Dnmt3b prefers germ line genes and centromeric regions: lessons from the ICF syndrome and cancer and implications for diseases. Biology (Basel) 3(3):578–605

    CAS  Google Scholar 

  • Widschwendter M, Jiang G, Woods C et al (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64(13):4472–4480

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Lam WC, Lai PB et al (2001) Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol 159(2):465–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong TN, Sosnick TR, Pan T (2007) Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad Sci U S A 104(46):17995–18000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie C, Yuan J, Li H et al (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(Database issue):D98–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Q, Pao GM, Huynh AM et al (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477(7363):179–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ph.D. grants (SFRH/BD/80446/2011, SFRH/BD/41576/2007, SFRH/BD/98122/2013, SFRH/BD/80808/2011), all from the Science and Technology Foundation (FCT) from Portugal.

Nomenclature

In the present work, the nomenclature for genes, proteins, and non-coding RNAs was the one recommended by HGNC (HUGO Gene Nomenclature Committee).

Conflict of interest

These authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Chaves.

Additional information

Responsible editors: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Daniela Ferreira and Susana Meles contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D., Meles, S., Escudeiro, A. et al. Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer. Chromosome Res 23, 479–493 (2015). https://doi.org/10.1007/s10577-015-9482-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9482-8

Keywords

Navigation