Skip to main content

Advertisement

Log in

Integration of exogenous DNA into mouse embryonic stem cell chromosomes shows preference into genes and frequent modification at junctions

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Chromosomal integration of exogenous DNA in mammalian cells allows stable gene expression for a variety of biological applications. Although it is presumably mediated by DNA repair machinery, little is known regarding site preferences and other characteristics. We isolated and analyzed 256 chromosomal-plasmid DNA integration junctions from 158 plasmid integrants after electroporation in mouse embryonic stem (ES) cells. The frequency of integrations in transcription units (40%) showed a slight but significant increase over the frequency estimated by computer simulation of random events (30%), suggesting preferential integration into genes. Microarray analysis revealed preference into genes, which are expressed in mouse ES cells. In contrast, bias toward integrations around transcriptional start sites, CpG islands and repeat elements was not observed. Furthermore, all host chromosome sequences as well as the majority of plasmids (96%) at the integration junctions were modified by deletions and/or insertions of additional nucleotides. Detailed analyses revealed frequent stem loop/hairpin formation mediated by weak homologies near plasmid ends before integration. Our study sheds light on a natural fate of exogenous DNA, which preferentially integrates into transcriptionally active chromosomal sites and by an imprecise end-joining pathway, associated with highly frequent modification of the end sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ES cells:

Embryonic stem cells

DSBs:

Double-strand breaks

HR:

Homologous recombination

NHEJ:

Non-homologous end-joining

SCID-X1:

X-linked severe combined immune deficiency

MLV:

Moloney murine leukemia virus

AAV:

Adeno-associated virus

rDNA:

Ribosomal RNA gene

AdVs:

Adenoviral vectors

PGK:

Phosphoglycerate kinase

Ad5:

Human adenovirus type 5

LINE:

Long interspersed nucleotide element

SINE:

Short interspersed nucleotide element

LTR:

Long terminal repeats

References

  • Bodley AL, Huang HC, Yu C, Liu LF (1993) Integration of simian virus 40 into cellular DNA occurs at or near topoisomerase II cleavage hot spots induced by VM-26 (teniposide). Mol Cell Biol 13:6190–6200

    CAS  PubMed  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A et al (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Yant SR, He CY, Meuse L, Shen S, Kay MA (2001) Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 3:403–410

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Chartrand P (1998) Direct evidence that transgene integration is random in murine cells, implying that naturally occurring double-strand breaks may be distributed similarly within the genome. Radiat Res 149:325–329

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Yan J, Little KC, Drouin R, Chartrand P (2002) Evidence that extrachromosomal double-strand break repair can be coupled to the repair of chromosomal double-strand breaks in mammalian cells. Chromosoma 111:304–312

    Article  CAS  PubMed  Google Scholar 

  • Derse D, Crise B, Li Y et al (2007) Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 81:6731–6741

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki K, Aratani Y, Fujisawa S, Motomura S, Okubo T, Koyama H (1996) DNA topoisomerase II inhibitors enhance random integration of transfected vectors into human chromosomes. Somat Cell Mol Genet 22:279–290

    Article  CAS  PubMed  Google Scholar 

  • Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  • Hu WS, Pathak VK (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 52:493–511

    CAS  PubMed  Google Scholar 

  • Inagaki K, Lewis SM, Wu X et al (2007) DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J Virol 81:11290–11303

    Article  CAS  PubMed  Google Scholar 

  • Kabotyanski EB, Gomelsky L, Han JO, Stamato TD, Roth DB (1998) Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res 26:5333–5342

    Article  CAS  PubMed  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Waldman AS (2001) Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158:1665–1674

    CAS  PubMed  Google Scholar 

  • Merrihew RV, Marburger K, Pennington SL, Roth DB, Wilson JH (1996) High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol 16:10–18

    CAS  PubMed  Google Scholar 

  • Miller DG, Petek LM, Russell DW (2004) Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 36:767–773

    Article  CAS  PubMed  Google Scholar 

  • Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW (2005) Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 79:11434–11442

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR et al (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  Google Scholar 

  • Nakai H, Montini E, Fuess S et al (2003) Helper-independent and AAV-ITR-independent chromosomal integration of double-stranded linear DNA vectors in mice. Mol Ther 7:101–111

    Article  CAS  PubMed  Google Scholar 

  • Nakai H, Wu X, Fuess S et al (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi F, Balamotis MA, Kishimoto A et al (2005) Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci USA 102:13628–13633

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Solis R, Davis AC, Bradley A (1993) Gene targeting in embryonic stem cells. Methods Enzymol 225:855–878

    Article  CAS  PubMed  Google Scholar 

  • Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa R 3 rd, Le Beau MM (1991) Preferential integration of marker DNA into the chromosomal fragile site at 3p14: an approach to cloning fragile sites. Proc Natl Acad Sci USA 88:6657–6661

    Article  CAS  PubMed  Google Scholar 

  • Rijkers T, Peetz A, Ruther U (1994) Insertional mutagenesis in transgenic mice. Transgenic Res 3:203–215

    Article  CAS  PubMed  Google Scholar 

  • Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599–2607

    CAS  PubMed  Google Scholar 

  • Secretan MB, Scuric Z, Oshima J et al (2004) Effect of Ku86 and DNA-PKcs deficiency on non-homologous end-joining and homologous recombination using a transient transfection assay. Mutat Res 554:351–364

    CAS  PubMed  Google Scholar 

  • Smith K (2001) Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod Nutr Dev 41:465–485

    Article  CAS  PubMed  Google Scholar 

  • Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E et al (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J 17:5497–5508

    Article  CAS  PubMed  Google Scholar 

  • Thrasher A, Gaspar B (2007) Severe Adverse Event in Clinical Trial of Gene Therapy for X-SCID. http://www.asgt.org/UserFiles/XSCIDstatement.pdf

  • Toneguzzo F, Keating A, Glynn S, McDonald K (1988) Electric field-mediated gene transfer: characterization of DNA transfer and patterns of integration in lymphoid cells. Nucleic Acids Res 16:5515–5532

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Perrault AR, Takeda Y, Qin W, Iliakis G (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31:5377–5388

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shayakhmetov DM, Leege T et al (2005) A capsid-modified helper-dependent adenovirus vector containing the beta-globin locus control region displays a nonrandom integration pattern and allows stable, erythroid-specific gene expression. J Virol 79:10999–11013

    Article  CAS  PubMed  Google Scholar 

  • Wurtele H, Little KC, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10:1791–1799

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toru Shimada (University of Tokyo, Tokyo, Japan) and Naoko Omuro (University of Tokyo, Tokyo, Japan) for high-quality sequencing, and Dr. Masami Muramatsu (Saitama Medical University, Saitama, Japan), Dr. Hiroyuki Nakai (University of Pittsburgh School of Medicine, Pittsburgh, PA) and the members of Mitani lab for helpful discussions. This work was supported in part by the Ministry of Education, Science, Sports, and Culture, in particular by a Ministry Grant to Research Center for Genomic Medicine, Saitama Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohnosuke Mitani.

Additional information

Responsible Editor: Yoichi Matsuda.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 42 kb)

High-resolution image (TIFF 429 kb)

Fig. S2

(JPEG 526 kb)

Fig. S3

(GIF 28 kb)

High-resolution image (TIFF 373 kb)

Fig. S4

(JPEG 1049 kb)

Table S1

(DOC 42 kb)

Table S2

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Ohbayashi, F., Nikaido, I. et al. Integration of exogenous DNA into mouse embryonic stem cell chromosomes shows preference into genes and frequent modification at junctions. Chromosome Res 18, 191–201 (2010). https://doi.org/10.1007/s10577-010-9111-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9111-5

Keywords

Navigation