Skip to main content
Log in

Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The organization of the amplified type I interferon (IFN) gene cluster and surrounding chromosomal regions was studied in the interphase cell nucleus of the human osteosarcoma cell line MG63. Rather than being arranged in a linear ladder-like array as in mitotic chromosomes, a cluster of approximately 15 foci was detected that was preferentially associated along the periphery of both the cell nucleus and a chromosome territory containing components of chromosomes 4, 8, and 9. Interspersed within the IFN gene foci were corresponding foci derived from amplified centromere 4 and 9 sequences. Other copies of chromosomes 4 and 8 were frequently detected in pairs or higher-order arrays lacking discrete borders between the chromosomes. In contrast, while chromosomes 4 and 8 in normal WI38 human fibroblast and osteoblast cells were occasionally found to associate closely, discrete boundaries were always detected between the two. DNA replication timing of the IFN gene cluster in early- to mid-S phase of WI38 cells was conserved in the amplified IFN gene cluster of MG63. Quantitative RT-PCR demonstrated a ∼3-fold increase in IFNβ transcripts in MG63 compared with WI38 and RNA/DNA FISH experiments revealed 1–5 foci of IFNβ transcripts per cell with only approximately 5% of the cells showing foci within the highly amplified IFN gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aCGH:

array comparative genomic hybridization

BAC:

bacterial artificial chromosome

CCD:

charge-coupled device

FISH:

fluorescent in situ hybridization

IFN:

interferon

PFA:

paraformaldehyde

poly(I:C):

polyriboinosinic:polyribocytidylic acid

SKY:

spectral karyotyping

References

  • Aladjem MI (2007) Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8:588–600

    Article  PubMed  CAS  Google Scholar 

  • Albiez H, Cremer M, Tiberi C et al (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14:707–733

    Article  PubMed  CAS  Google Scholar 

  • Bartova E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98:323–336

    Article  PubMed  CAS  Google Scholar 

  • Berezney R (2002) Regulating the mammalian genome: the role of nuclear architecture. Adv Enzyme Regul 42:39–52

    Article  PubMed  CAS  Google Scholar 

  • Bernard Wa.G, N (1963) The fine structure of the cancer cell nucleus. Exp Cell Res (suppl 9):19–53

  • Billiau A, Edy VG, Heremans H et al (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 12:11–15

    PubMed  CAS  Google Scholar 

  • Bode J, Benham C, Ernst E et al (2000) Fatal connections: when DNA ends meet on the nuclear matrix. J Cell Biochem Suppl 35:3–22

    Article  PubMed  Google Scholar 

  • Bouteille M, Laval M, Dupoy-Coin AM (1974) Localization of nuclear functions as revealed by ultrastructural autoradiography and cytochemistry. In: Busch H (ed) The cell nucleus. Vol. 1. Academic Press, New York, pp 3–71

    Google Scholar 

  • Bridge JA, Nelson M, McComb E et al (1997) Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet 95:74–87

    Article  PubMed  CAS  Google Scholar 

  • Chakalova L, Carter D, Fraser P (2004) RNA fluorescence in situ hybridization tagging and recovery of associated proteins to analyze in vivo chromatin interactions. Methods Enzymol 375:479–493

    Article  PubMed  CAS  Google Scholar 

  • Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6:669–677

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Christova R, Jones T, Wu PJ et al (2007) P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci 120:3262–3270

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Diaz MO, Pomykala HM, Bohlander SK et al (1994) Structure of the human type-I interferon gene cluster determined from a YAC clone contig. Genomics 22:540–552

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Berezney R (2002) The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115:4037–4051

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  PubMed  CAS  Google Scholar 

  • Feuerbach F, Galy V, Trelles-Sticken E et al (2002) Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nat Cell Biol 4:214–221

    Article  PubMed  CAS  Google Scholar 

  • Frohling S, Dohner H (2008) Chromosomal abnormalities in cancer. N Engl J Med 359:722–734

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sagredo JM (2008) Fifty years of cytogenetics: a parallel view of the evolution of cytogenetics and genotoxicology. Biochim Biophys Acta 1779:363–375

    PubMed  CAS  Google Scholar 

  • Gilbert DM (2002) Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol 14:377–383

    Article  PubMed  CAS  Google Scholar 

  • Goren A, Tabib A, Hecht M, Cedar H (2008) DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 22:1319–1324

    Article  PubMed  CAS  Google Scholar 

  • Hiratani I, Leskovar A, Gilbert DM (2004) Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci U S A 101:16861–16866

    Article  PubMed  CAS  Google Scholar 

  • Hyman E, Kauraniemi P, Hautaniemi S et al (2002) Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62:6240–6245

    PubMed  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • Lau CC, Harris CP, Lu XY et al (2004) Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer 39:11–21

    Article  PubMed  Google Scholar 

  • Lim G, Karaskova J, Vukovic B et al (2004) Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Cancer Genet Cytogenet 153:158–164

    Article  PubMed  CAS  Google Scholar 

  • Lim G, Karaskova J, Beheshti B et al (2005) An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma. Genes Chromosomes Cancer 42:392–403

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Samarabandu J, Devdhar RS et al (1998) Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143:1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Macville M, Veldman T, Padilla-Nash H et al (1997) Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol 108:299–305

    Article  PubMed  CAS  Google Scholar 

  • Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 117:553–567

    Article  PubMed  Google Scholar 

  • Man TK, Lu XY, Jaeweon K et al (2004) Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 4:45

    Article  PubMed  Google Scholar 

  • Marella NV, Zeitz MJ, Malyavantham KS et al (2008) Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Res 16:1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2004) Spatial positioning; a new dimension in genome function. Cell 119:153–156

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192

    Article  PubMed  Google Scholar 

  • Panning MM, Gilbert DM (2005) Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J Cell Biochem 95:74–82

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, Sotiriou S, Misteli T (2004) Spatial genome organization. Exp Cell Res 296:64–70

    Article  PubMed  CAS  Google Scholar 

  • Patel AS, Hawkins AL, Griffin CA (2000) Cytogenetics and cancer. Curr Opin Oncol 12:62–67

    Article  PubMed  CAS  Google Scholar 

  • Pienta KJ, Partin AW, Coffey DS (1989) Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res 49:2525–2532

    PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Branco MR (2007) Functional organisation of the genome during interphase. Curr Opin Genet Dev 17:451–455

    Article  Google Scholar 

  • Ragland BD, Bell WC, Lopez RR, Siegal GP (2002) Cytogenetics and molecular biology of osteosarcoma. Lab Invest 82:365–373

    PubMed  Google Scholar 

  • Raj NB, Pitha PM (1993) 65-kDa protein binds to destabilizing sequences in the IFN-beta mRNA coding and 3′ UTR. FASEB J 7:702–710

    PubMed  CAS  Google Scholar 

  • Razin SV, Iarovaia OV, Sjakste N et al (2007) Chromatin domains and regulation of transcription. J Mol Biol 369:597–607

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    Article  PubMed  CAS  Google Scholar 

  • Schrock E, Veldman T, Padilla-Nash H et al (1997) Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet 101:255–262

    Article  PubMed  CAS  Google Scholar 

  • Schubeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32:438–442

    Article  PubMed  Google Scholar 

  • Selig S, Okumura K, Ward DC, Cedar H (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 11:1217–1225

    PubMed  CAS  Google Scholar 

  • Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281

    Article  PubMed  CAS  Google Scholar 

  • Squire JA, Pei J, Marrano P et al (2003) High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 38:215–225

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Montecino M, van Wijnen AJ, Stein JL, Lian JB (2000) Nuclear structure–gene expression interrelationships: implications for aberrant gene expression in cancer. Cancer Res 60:2067–2076

    PubMed  CAS  Google Scholar 

  • Stein GS, Zaidi SK, Braastad CD et al (2003) Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13:584–592

    Article  PubMed  CAS  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381

    Article  PubMed  CAS  Google Scholar 

  • Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5:45–54

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Roninson IB, Tsuruo T (1987) Decreased expression of the amplified mdr1 gene in revertants of multidrug-resistant human myelogenous leukemia K562 occurs without loss of amplified DNA. Mol Cell Biol 7:4549–4552

    PubMed  CAS  Google Scholar 

  • Tenzen T, Yamagata T, Fukagawa T et al (1997) Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol Cell Biol 17:4043–4050

    PubMed  CAS  Google Scholar 

  • Visser AE, Aten JA (1999) Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci 112(Pt 19):3353–3360

    PubMed  CAS  Google Scholar 

  • Vissers LE, de Vries BB, Osoegawa K et al (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    PubMed  CAS  Google Scholar 

  • Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R (1998) Segregation of transcription and replication sites into higher order domains. Science 281:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • White EJ, Emanuelsson O, Scalzo D et al (2004) DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci U S A 101:17771–17776

    Article  PubMed  CAS  Google Scholar 

  • Whittemore LA, Maniatis T (1990a) Postinduction repression of the beta-interferon gene is mediated through two positive regulatory domains. Proc Natl Acad Sci U S A 87:7799–7803

    Article  PubMed  CAS  Google Scholar 

  • Whittemore LA, Maniatis T (1990b) Postinduction turnoff of beta-interferon gene expression. Mol Cell Biol. 10:1329–1337

    PubMed  CAS  Google Scholar 

  • Winkelmann S (2007) Dynamische Aspekte der Kernarchitektur: S/MARs und ihre Rolle bei der Etablierung aktiver Transkriptionseinheiten. Dissertation, Technical. In: Life Sciences, Biology. Universität of Braunschweig, http://www.digibib.tu-bs.de/?docid=00020961. 44–47

  • Woodfine K, Fiegler H, Beare DM et al (2004) Replication timing of the human genome. Hum Mol Genet 13:191–202

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Cook PR (2008) Similar active genes cluster in specialized transcription factories. J Cell Biol 181:615–623

    Article  PubMed  CAS  Google Scholar 

  • Zaidi SK, Young DW, Javed A et al (2007) Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7:454–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Health (GM-072131) to R. Berezney; grants LC535, MSM0021620806, and AV0Z50110509 to I. Raska; and the Excellence Initiative “REBIRTH”, the SFB 738, and the CliniGene Network of Excellence (European Commission FP6 Research Program, contract LSHB-CT-2006–018933) to J. Bode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Berezney.

Additional information

Responsible Editor: Dean Jackson

Electronic supplementary material

Below is the link to the electronic supplementary material

Fig. S1

3D DNA FISH in human MG63 osteosarcoma and diploid HOB osteoblasts cells. (A, B) Regions of association between Chr4 red and Chr8 green in one MG63 cell, with corresponding line profiles. (C, D) Regions of association between Chr4 red and Chr8 green in two osteoblast cells, with corresponding line profiles (GIF 71.2 KB)

Fig. S1

High Resolution Image (TIF 607 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeitz, M.J., Marella, N.V., Malyavantham, K.S. et al. Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells. Chromosome Res 17, 305–319 (2009). https://doi.org/10.1007/s10577-009-9023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9023-4

Keywords

Navigation