Skip to main content

Advertisement

Log in

Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of ∼6-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in-situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5–7 ‘bands’ spanning a single chromosome termed the ‘IFN chromosome’. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labelling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that co-localized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage–fusion–bridge events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

aCGH:

array comparative genomic hybridization

BAC:

bacterial artificial chromosome

BFB:

breakage–fusion–bridge

CCD:

charge-coupled device

CCR:

complex chromosome rearrangements

CENP:

centromeric protein

FISH:

fluorescence in-situ hybridization

FRA:

fragile sites

IFN:

interferon

SKY:

spectral karyotyping

References

  • Al-Romaih K, Bayani J, Vorobyova J et al. (2003) Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet Cytogenet 144: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Aladjem MI (2007) Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8: 588–600.

    Article  PubMed  CAS  Google Scholar 

  • Albertson DG (2006) Gene amplification in cancer. Trends Genet 22: 447–455.

    Article  PubMed  CAS  Google Scholar 

  • Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341: 342–352.

    Article  PubMed  CAS  Google Scholar 

  • Atiye J, Wolf M, Kaur S et al. (2005) Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 42: 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Bayani J, Zielenska M, Pandita A et al. (2003) Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 36: 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Berger R, Bernard OA (2007) Jumping translocations. Genes Chromosomes Cancer 46: 717–723.

    Article  PubMed  CAS  Google Scholar 

  • Billiau A, Edy VG, Heremans H et al. (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 12: 11–15.

    PubMed  CAS  Google Scholar 

  • Bode J, Benham C, Ernst E et al. (2000) Fatal connections: when DNA ends meet on the nuclear matrix. J Cell Biochem Suppl (Supplement 35): 3–22.

    Article  Google Scholar 

  • Bohlander SK, Dreyling MH et al. (1994) Mapping a putative tumor suppressor gene on chromosome 9 bands p21-p22 with microdissection probes. Genomics 24: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Bonetta L (1994) Tumor-suppressor genes. Open questions on p16. Nature 370: 180.

    Article  PubMed  CAS  Google Scholar 

  • Bridge JA, Nelson M, Mccomb E et al. (1997) Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet 95: 74–87.

    Article  PubMed  CAS  Google Scholar 

  • Buttel I, Fechter A, Schwab M (2004) Common fragile sites and cancer: targeted cloning by insertional mutagenesis. Ann N Y Acad Sci 1028: 14–27.

    PubMed  Google Scholar 

  • Cairns P, Shaw ME, Knowles MA (1993) Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene 8: 1083–1085.

    PubMed  CAS  Google Scholar 

  • Cairns P, Tokino K, Eby Y, Sidransky D (1994) Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res 54: 1422–1424.

    PubMed  CAS  Google Scholar 

  • Center R, Lukeis R, Dietzsch E, Gillespie M, Garson OM (1993) Molecular deletion of 9p sequences in non-small cell lung cancer and malignant mesothelioma. Genes Chromosomes Cancer 7: 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Cheng JQ, Jhanwar SC, Lu YY, Testa JR (1993) Homozygous deletions within 9p21-p22 identify a small critical region of chromosomal loss in human malignant mesotheliomas. Cancer Res 53: 4761–4763.

    PubMed  CAS  Google Scholar 

  • Chernova OB, Chernov MV, Ishizaka Y, Agarwal ML, Stark GR (1998) MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-l-aspartate-treated cells, permitting CAD gene amplification. Mol Cell Biol 18: 536–545.

    PubMed  CAS  Google Scholar 

  • Ciullo M, Debily MA, Rozier L et al. (2002) Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 11: 2887–2894.

    Article  PubMed  CAS  Google Scholar 

  • Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Cowell JK, Nowak NJ (2003) High-resolution analysis of genetic events in cancer cells using bacterial artificial chromosome arrays and comparative genome hybridization. Adv Cancer Res 90: 91–125.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Von Hase J, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541–567.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Diaz MO (1995) The human type I interferon gene cluster. Semin Virol 6: 143–149.

    Article  CAS  Google Scholar 

  • Diaz MO, Rubin CM, Harden A et al. (1990) Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med 322: 77–82.

    PubMed  CAS  Google Scholar 

  • Diaz MO, Pomykala HM, Bohlander SK et al. (1994) Structure of the human type-I interferon gene cluster determined from a YAC clone contig. Genomics 22: 540–552.

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos Aguiar S, De Jesus Girotto Zambaldi L, Dos Santos AM, Pinto W Jr, Brandalise SR (2007) Comparative genomic hybridization analysis of abnormalities in chromosome 21 in childhood osteosarcoma. Cancer Genet Cytogenet 175: 35–40.

    Article  PubMed  Google Scholar 

  • Earnshaw WC, Ratrie H 3rd, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Forus A, Weghuis DO, Smeets D, Fodstad O, Myklebost O, Geurts Van Kessel A (1995) Comparative genomic hybridization analysis of human sarcomas: II Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer 14: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Fountain JW, Karayiorgou M, Ernstoff MS et al. (1992) Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci U S A 89: 10557–10561.

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Pendon C, Morris J, Brown W (1999) CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J 18: 4196–4209.

    Article  PubMed  CAS  Google Scholar 

  • Ghadimi BM, Sackett DL, Difilippantonio MJ et al. (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242: 283–336.

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Pettersson L, Hoglund M et al. (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A 97: 5357–5362.

    Article  PubMed  CAS  Google Scholar 

  • Grasser F, Neusser M, Fiegler H et al. (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121: 1876–1886.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  • Hellman A, Zlotorynski E, Scherer SW et al. (2002) A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Henegariu O, Heerema NA, Lowe Wright L, Bray-Ward P, Ward DC, Vance GH (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Inazawa J, Inoue J, Imoto I (2004) Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 95: 559–563.

    Article  PubMed  CAS  Google Scholar 

  • Jagasia AA, Block JA, Qureshi A et al. (1996) Chromosome 9 related aberrations and deletions of the CDKN2 and MTS2 putative tumor suppressor genes in human chondrosarcomas. Cancer Lett 105: 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Yokota J (2006a) Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5: 1273–1281.

    Article  CAS  Google Scholar 

  • Kohno T, Yokota J (2006b) Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: Deduction from structural analysis of breakpoints for deletions. DNA Repair 5: 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Ladanyi M, Bridge JA (2000) Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol 31: 532–538.

    Article  PubMed  CAS  Google Scholar 

  • Lau CC, Harris CP, Lu XY et al. (2004) Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer 39: 11–21.

    Article  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Lim G, Karaskova J, Vukovic B et al. (2004) Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Cancer Genet Cytogenet 153: 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Lim G, Karaskova J, Beheshti B et al. (2005) An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma. Genes Chromosomes Cancer 42: 392–403.

    Article  PubMed  CAS  Google Scholar 

  • Lu XY, Lu Y, Zhao YJ et al. (2008) Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol Cancer Res 6: 937–946.

    Article  PubMed  CAS  Google Scholar 

  • Macville M, Veldman T, Padilla-Nash H et al. (1997) Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol 108: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma. doi:10.1007/s00412-008-0172-6.

  • Masuda A, Takahashi T (2002) Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21: 6884–6897.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.

    PubMed  CAS  Google Scholar 

  • Mertens F, Mandahl N, Orndal C et al. (1993) Cytogenetic findings in 33 osteosarcomas. Int J Cancer 55: 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Miller CW, Aslo A, Campbell MJ, Kawamata N, Lampkin BC, Koeffler HP (1996a) Alterations of the p15, p16,and p18 genes in osteosarcoma. Cancer Genet Cytogenet 86: 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP (1996b) Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 122: 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Miller CW, Yeon C, Aslo A, Mendoza S, Aytac U, Koeffler HP (1997) The p19INK4D cyclin dependent kinase inhibitor gene is altered in osteosarcoma. Oncogene 15: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Moriarty HT, Webster LR (2003) Fragile sites and bladder cancer. Cancer Genet Cytogenet 140: 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen GP, Burns KL, Rosenberg AE, Louis DN (1998) CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am J Pathol 153: 159–163.

    PubMed  CAS  Google Scholar 

  • Nowak NJ, Gaile D, Conroy JM et al. (2005) Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 161: 36–50.

    Article  PubMed  CAS  Google Scholar 

  • Ohata N, Ito S, Yoshida A et al. (2006) Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma. Int J Mol Med 18: 1153–1158.

    PubMed  CAS  Google Scholar 

  • Okamoto A, Demetrick DJ, Spillare EA et al. (1994) Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci U S A 91: 11045–11049.

    Article  PubMed  CAS  Google Scholar 

  • Olopade OI, Bohlander SK, Pomykala H et al. (1992a) Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia. Genomics 14: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Olopade OI, Jenkins RB, Ransom DT et al. (1992b) Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res 52: 2523–2529.

    PubMed  CAS  Google Scholar 

  • Ozaki T, Neumann T, Wai D et al. (2003) Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping. Cancer Genet Cytogenet 140: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Packenham JP, Taylor JA, White CM, Anna CH, Barrett JC, Devereux TR (1995) Homozygous deletions at chromosome 9p21 and mutation analysis of p16 and p15 in microdissected primary non-small cell lung cancers. Clin Cancer Res 1: 687–690.

    Google Scholar 

  • Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D et al. (2001) Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer 30: 349–363.

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Earnshaw WC, Choo KH, Shaffer LG (1995) Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet 4: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Park YB, Park MJ, Kimura K, Shimizu K, Lee SH, Yokota J (2002) Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet Cytogenet 133: 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Patino-Garcia A, Sierrasesumaga L (1997) Analysis of the p16INK4 and TP53 tumor suppressor genes in bone sarcoma pediatric patients. Cancer Genet Cytogenet 98: 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Picci P (2007) Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis 2: 6.

    Article  PubMed  Google Scholar 

  • Pichiorri F, Ishii H, Okumura H, Trapasso F, Wang Y, Huebner K (2008) Molecular parameters of genome instability: roles of fragile genes at common fragile sites. J Cell Biochem 104: 1525–1533.

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Politi V, Perini G, Trazzi S et al. (2002) CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 115: 2317–2327.

    PubMed  CAS  Google Scholar 

  • Popescu NC (2003) Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett 192: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Ragland BD, Bell WC, Lopez RR, Siegal GP (2002) Cytogenetics and molecular biology of osteosarcoma. Lab Invest 82: 365–373.

    PubMed  Google Scholar 

  • Rakosy Z, Vizkeleti L, Ecsedi S et al. (2008) Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. Cancer Genet Cytogenet 182: 116–121.

    Article  PubMed  CAS  Google Scholar 

  • Richards RI (2001) Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet 17: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA et al. (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70: 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Schrock E, Du Manoir S, Veldman T et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273: 494–497.

    Article  PubMed  CAS  Google Scholar 

  • Selvarajah S, Yoshimoto M, Park PC et al. (2006) The breakage-fusion-bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma. Chromosoma 115: 459–467.

    Article  PubMed  CAS  Google Scholar 

  • Smith DI, Mcavoy S, Zhu Y, Perez DS (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Southgate J, Proffitt J, Roberts P, Smith B, Selby P (1995) Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines. Br J Cancer 72: 1214–1218.

    PubMed  CAS  Google Scholar 

  • Stadler WM, Sherman J, Bohlander SK et al. (1994) Homozygous deletions within chromosomal bands 9p21–22 in bladder cancer. Cancer Res 54: 2060–2063.

    PubMed  CAS  Google Scholar 

  • Stock C, Kager L, Fink FM, Gadner H, Ambros PF (2000) Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 28: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Tarkkanen M, Karhu R, Kallioniemi A et al. (1995) Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization. Cancer Res 55: 1334–1338.

    PubMed  CAS  Google Scholar 

  • Tarkkanen M, Elomaa I, Blomqvist C et al. (1999) DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer 84: 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Toguchida J, Yamaguchi T, Ritchie B et al. (1992) Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res 52: 6194–6199.

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Unni KK (1998) Osteosarcoma of bone. J Orthop Sci 3: 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Usvasalo A, Savola S, Raty R et al. (2008) CDKN2A deletions in acute lymphoblastic leukemia of adolescents and young adults: an array CGH study. Leuk Res 32: 1228–1235.

    Article  PubMed  CAS  Google Scholar 

  • Vissers LE, De Vries BB, Osoegawa K et al. (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73: 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Wang LL (2005) Biology of osteogenic sarcoma. Cancer J 11: 294–305.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chen ZH, Savarese TM (1996) Codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, interferon-alpha1, interferon-beta1, and other 9p21 markers in human malignant cell lines. Cancer Genet Cytogenet 86: 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Zielenska M, Bayani J, Pandita A et al. (2001) Comparative genomic hybridization analysis identifies gains of 1p35∼p36 and chromosome 19 in osteosarcoma. Cancer Genetics and Cytogenetics 130: 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Zieve GW, Turnbull D, Mullins JM, Mcintosh JR (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res 126: 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Zink D (2006) The temporal program of DNA replication: new insights into old questions. Chromosoma 115: 273–287.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr William Earnshaw, Wellcome Trust Centre for Cell Biology, University of Edinburgh for providing us with centromeric protein antibodies and advice. This work was supported by a grant from the National Institute of Health (GM-072131) to R. Berezney, grants LC535, MSM0021620806, AV0Z50110509 to I. Raska and the Excellence Initiative ‘REBIRTH’, the SFB 738 and the CliniGene Network of Excellence (European Commission FP6 Research Program, contract LSHB-CT-2006-018933) to J. Bode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Berezney.

Electronic Supplementary Material

Below is the image is a link to a high resolution version.

Supplementary Figure S1

Spectral karyotyping (SKY) of MG63 cell line. (A–E) Spectral karyotyping analyses of six representative MG63 metaphase chromosome spreads are shown. (F, G) Spectral karyotyping of normal diploid human fibroblast (NHF-1) cell line. (F) Representative image of metaphase chromosomes of NHF-1 cell line labelled with SKY probes and the corresponding (G) karyotype analysis of the above spread is shown. (GIF 247 kb, 196 kb, 270 kb)

High resolution image file (TIFF 402 kb)

High resolution image file (TIFF 305 kb)

High resolution image file (TIFF 607 kb)

Supplementary Figure S2

Interferon gene probe labelling on MG63 metaphase spreads. (A–D) Four representative images of MG63 metaphase chromosomes hybridized with cosmid probe 133D4 (green) that spans across the interferon ω gene are shown. Chromosomes showing amplification of the IFN cluster are indicated by arrows, while arrow heads point to other chromosomes in the spread that show signal for the IFN gene probe. Chromosomes are stained with DAPI (blue). (GIF 119 kb)

High resolution image file (TIFF 1.18 mb)

Supplementary Figure S3

Magnified images of IFN chromosome. (A–L) Magnified images of the IFN chromosome showing amplification for the cosmid probe 133D4 (green) are shown. Chromosomes are stained with DAPI (blue). (GIF 221 kb)

High resolution image file (TIFF 2 mb)

Supplementary Figure S4

Labelling of IFN gene probes, whole-chromosome painting and centromere labelling of 4, 9 and 8 over three other osteosarcoma cell lines. (A–C) Labelling of chromosomes with whole-chromosome 9 paint (green) and G20 BAC probe in (A) Saos-2, (B) U-2 OS and (C) SK-ES-1 cell lines. (D–F) Labelling of centromere 4 (green) in (D) Saos-2, (E) U-2 OS and (F) SK-ES-1 cell lines. (G–I) Labelling of centromere 9 (red) on metaphase chromosomes of (G) Saos-2, (H) U-2 OS and (I) SK-ES-1 cell lines. (J–L) Double labelling of whole-chromosome painting of chromosome 4 (green) and chromosome 8 (red) in (J) Saos-2, (K) U-2 OS and (L) SK-ES-1 cell lines. Chromosomes are stained with DAPI (blue). (GIF 265)

High resolution image file (TIFF 2.63 mb)

Below is the link to the electronic supplementary material.

Supplementary Figure S5

Array-based comparative genomic hybridization (aCGH) analysis of MG63 cell line. Graphs for individual chromosomes with normalized ratio for each spot in relation to their location on the chromosome are plotted. Normal genomic content is represented by a ratio of 1. Upward peaks from this ratio indicate gains in genomic material while downward peaks indicate a loss in the genome. Array results showed gains and losses at various regions in the genome. Significant gains have been observed in chromosomes 1, 3, 8, 9 and 15 while major losses are seen in chromosomes 3, 4, 7, 9 and 16. (PDF 180 kb)

Supplementary Table S1

Comparative genomic hybridization (CGH) analysis of chromosome arm 9p in MG63 cell line. The table represents the various probes that span the chromosome arm 9p and the corresponding ratios of amplification or deletion in MG63 cell line are shown. Normal genomic content is represented by a ratio of 1. A portion of this table is displayed in Figure S5. (PDF 30.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marella, N.V., Zeitz, M.J., Malyavantham, K.S. et al. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Res 16, 1177–1192 (2008). https://doi.org/10.1007/s10577-008-1267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1267-x

Key words

Navigation