Skip to main content

Advertisement

Log in

The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Fluorescence immunostaining for the phosphorylated H2AX histone (γH2AX) in the grasshopper Eyprepocnemis plorans has shown abundance of γH2AX in the nuclei of round and elongating spermatids, suggesting that DNA double-strand breaks (DSBs) occur regularly during spermiogenesis. Immunofluorescence patterns for Ku70, a DNA-repair protein participating in the non-homologous end-joining (NHEJ) pathway, showed that this protein is present in round and elongating spermatids, implying that the NHEJ DNA-repair pathway operates during chromatin compaction in spermiogenesis. In addition, during the final stages of spermiogenesis, the Ku70 protein concentrates on the region forming the sperm tail. Since Ku70 was also abundant in spermatid tails, it is reasonable to assume that Ku70 might play a novel function in sperm-tail formation. The analysis of Ku70 immunofluorescence patterns in 13 other grasshopper species also showed the presence of this protein in the nucleus and tail of elongating spermatids, indicating that this is a general characteristic in grasshoppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariumi Y, Masutani M, Copeland TD, et al. (1999) Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 18: 4616–625.

    Article  CAS  PubMed  Google Scholar 

  • Bertinato J, Schild-Poulter C, Hache RJG (2001) Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 114: 89–9.

    CAS  PubMed  Google Scholar 

  • Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117: 9–5.

    Article  CAS  PubMed  Google Scholar 

  • Boissonneault G (2002) Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett 514: 111–14.

    Article  CAS  PubMed  Google Scholar 

  • Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007a) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res (in press).

  • Cabrero J, Teruel M, Carmona FD, Camacho JPM (2007b) Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenet Genome Res 116: 311–15.

    Article  CAS  Google Scholar 

  • Calvente A, Viera A, Page J, et al. (2005) DNA-double strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. J Cell Sci 118: 2957–963.

    Article  CAS  PubMed  Google Scholar 

  • Camara-Clayette V, Thomas D, Rahuel C, Barbey R, Cartron JP, Bertrand O (1999) The repressor which binds the -75 GATA motif of the GPB promoter contains Ku70 as the DNA binding subunit. Nucleic Acids Res 27: 1656–663.

    Article  CAS  PubMed  Google Scholar 

  • Caron N, Veilleux S, Boissonneault G (2001) Stimulation of DNA repair by the spermatidal TP1 protein. Mol Reprod Dev 58: 437–43.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, et al. (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4: 497–08.

    Article  CAS  PubMed  Google Scholar 

  • Gao YJ, Chaudhuri J, Zhu CM, Davidson L, Weaver DT, Alt FW (1998) A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9: 367–76.

    Article  CAS  PubMed  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for meiotic recombination in plants. EMBO J 20: 589–00.

    Article  CAS  PubMed  Google Scholar 

  • Gu YS, Sekiguchi J, Gao YJ, Dikkes P, et al. (2000) Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci USA 97: 2668–673.

    Article  CAS  PubMed  Google Scholar 

  • Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, et al. (2003) Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol Reprod 68: 717–21.

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, Shin YJ, Shim YJ, Jeong SY, Park IS, Min BH (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12 cells. Exp Cell Res 309: 305–15.

    Article  CAS  PubMed  Google Scholar 

  • Katz DJ, Beer MA, Levorse JM, Tilghman SM (2005) Functional characterization of a novel Ku70/80 pause site at the H19/Igf2 imprinting control region. Mol Cell Biol 25: 3855–863.

    Article  CAS  PubMed  Google Scholar 

  • Koike M (2002) Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res 43: 223–36.

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Shiomi T, Koike A (2001) Dimerization and nuclear localization of Ku proteins. J Biol Chem 276: 11167–1173.

    Article  CAS  PubMed  Google Scholar 

  • Laberge RM, Boissonneault G (2005) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73: 289–96.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–85.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Navarro S, Kasahara N, Comai L (2004) Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 279: 13659–3667.

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Hunter TC, Loudy DE, Dave V, Schreiber V, Whitsett JA (2006) PARP-2 interacts with TTF-1 and regulates expression of surfactant protein-B. J Biol Chem 281: 9600–606.

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, et al. (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27: 236–38.

    Article  Google Scholar 

  • Martínez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P (2005) Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123: 1013–023.

    Article  PubMed  Google Scholar 

  • Meyer-Ficca ML, Scherthan H, Burkle A, Meyer RG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114: 67–4.

    Article  CAS  PubMed  Google Scholar 

  • Mischo HE, Hemmerich P, Grosse F, Zhang SS (2005) Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 280: 9586–594.

    Article  CAS  PubMed  Google Scholar 

  • Monferran S, Muller C, Mourey L, Frit P, Salles B (2004a) The membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J Mol Biol 337: 503–11.

    Article  CAS  Google Scholar 

  • Monferran S, Paupert J, Dauvillier S, Salles B, Muller C (2004b) The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. Embo J 23: 3758–768.

    Article  CAS  Google Scholar 

  • Muller C, Paupert J, Monferran S, Salles B (2005) The double life of the Ku protein—Facing the DNA breaks and the extracellular environment. Cell Cycle 4: 438–41.

    CAS  PubMed  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genetics 36: 617–56.

    Article  CAS  Google Scholar 

  • Poggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378: 1–0.

    Article  PubMed  Google Scholar 

  • Risley MS, Einheber S, Bumcrot DA (1986) Changes in DNA topology during spermatogenesis. Chromosoma 94: 217–27.

    Article  CAS  PubMed  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Gene Dev 11: 2600–621.

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–868.

    Article  CAS  PubMed  Google Scholar 

  • Sawada M, Sun WY, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5: 320–29.

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Haaf T (1998) DNA nicks and increased sensitivity of DNA to fluorescence in situ end labeling during functional spermiogenesis. Biotechniques 25: 496–02.

    CAS  PubMed  Google Scholar 

  • Song KY, Jung YS, Jung DH, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1 alpha. J Biol Chem 276: 8321–327.

    Article  CAS  PubMed  Google Scholar 

  • Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M (1998) Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod 4: 939–45.

    Article  CAS  PubMed  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, et al. (1998) Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355–66.

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, et al. (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497–508.

    Article  CAS  PubMed  Google Scholar 

  • Tres LL (2005) XY chromosomal bivalent: nucleolar attraction. Mol Reprod Dev 72: 1–.

    Article  CAS  PubMed  Google Scholar 

  • Tuteja R, Tuteja N (2000) Ku autoantigen: A multifunctional DNA-binding protein. Crit Rev Biochem Mol Biol 35: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon AA, Den Boer PJ, Van der Schans GP, et al. (1991) Immunochemical detection of DNA damage induction and repair at different cellular stages of spermatogenesis of the hamster after in vitro or in vivo exposure to ionizing radiation. Exp Cell Res 193: 303–09.

    Article  PubMed  Google Scholar 

  • Viera A, Santos JL, Page J, et al. (2004) DNA double-strand-break, recombination and synapsis, the timing of meiosis differs in grasshoppers and flies. EMBO Rep 5: 385–91.

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Wu WZ, Wu WQ, et al. (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34: 6170–182.

    Article  CAS  PubMed  Google Scholar 

  • Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P (1998) Nuclear basic proteins in spermiogenesis. Biochimie 80: 117–28.

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Yeh SY, Leskov K, et al. (1999) Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 27: 2165–174.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Elledge SJ (2000) The DNA damage response: putting chekpoints in perspective. Nature 408: 433–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro M. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrero, J., Palomino-Morales, R.J. & Camacho, J.P.M. The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res 15, 1093–1100 (2007). https://doi.org/10.1007/s10577-007-1183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1183-5

Key words

Navigation