Skip to main content
Log in

Regulation of chromatin structure by histone H3S10 phosphorylation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The epigenetic phospho-serine 10 modification of histone H3 has been a puzzle due to its association with two apparently opposed chromatin states. It is found at elevated levels on the highly condensed, transcriptionally inactive mitotic chromosomes yet is also correlated with the more extended chromatin configuration of active genes, euchromatic interband regions, and activated heat shock puffs of Drosophila polytene chromosomes. In addition, phosphorylation of histone H3S10 is up-regulated on the hypertranscribed male X chromosome. Here we review the cellular effects of histone H3S10 phosphorylation and discuss a model for its involvement in regulating chromatin organization and heterochromatization that would be applicable to both interphase and mitotic chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153: 865–880.

    Article  PubMed  CAS  Google Scholar 

  • Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111: 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Akhtar A (2003) Dosage compensation: an intertwined world of RNA and chromatin remodeling. Curr Opin Genet Dev 13: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS (2003) A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423: 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1970) Patterns of puffing activity in the salivary gland chromosomes of Drosophila. V. Responses to environmental treatments. Chromosoma 31: 356–376.

    Article  PubMed  CAS  Google Scholar 

  • Barratt MJ, Hazzalin CA, Cano E, Mahadevan LC (1994) Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc Natl Acad Sci USA 91: 4781–4785.

    Article  PubMed  CAS  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71: 247–273.

    Article  PubMed  CAS  Google Scholar 

  • Belote JM, Lucchesi JC (1980) Male-specific lethal mutations of Drosophila melanogaster. Genetics 96: 165–186.

    PubMed  CAS  Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda ML (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8: 96–104.

    PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Does looping and clustering in the nucleus regulate gene expression? Curr Opin Cell Biol 16: 256–262.

    Article  PubMed  CAS  Google Scholar 

  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3: 1241–1247.

    Article  PubMed  CAS  Google Scholar 

  • de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11: 447–459.

    Article  PubMed  Google Scholar 

  • Delattre M, Spierer A, Jaquet Y, Spierer P (2004) Increased expression of Drosophila Su(var)3-7 triggers Su(var)3-9-dependent heterochromatin formation. J Cell Sci 117: 6239–6247.

    Article  PubMed  CAS  Google Scholar 

  • DeManno DA, Cottom JE, Kline MP, Peters CA, Maizels ET, Hunzicker-Dunn M (1999) Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol Endocrinol 13: 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Zhang W, Bao X et al. (2005) The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma 114: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing β-globin regulatory sequences. J Cell Sci 117: 4603–4614.

    Article  PubMed  CAS  Google Scholar 

  • Dunn KL, Espino PS, Drobic B, He S, Davie JR (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T, Reuter G (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18: 2973–2983.

    Article  PubMed  CAS  Google Scholar 

  • Elgin SC (1988) The formation and function of DNaseI hypersensitive sites in the process of gene activation. J Biol Chem 263: 19259–19262.

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003a) Histone and chromatin cross-talk. Curr Opinion Cell Biol 15: 172–183.

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003b) Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479.

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL et al. (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438: 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  • Fry CJ, Shogren-Knaak MA, Peterson CL (2004) Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harbor Symp Quant Biol 69: 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga A, Tanaka A, Oishi K (1975) Maleless, a recessive autosomal mutant of Drosophila melanogaster that specifically kills male zygotes. Genetics 81: 135–141.

    PubMed  CAS  Google Scholar 

  • Giet R, Glover D (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152: 669–682.

    Article  PubMed  CAS  Google Scholar 

  • Gorman M, Baker BS (1994) How flies make one equal two: dosage compensation in Drosophila. Trends Genet 10: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12: 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Hamada FN, Park PJ, Gordadze PR, Kuroda MI (2005) Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev 19: 2289–2294.

    Article  PubMed  CAS  Google Scholar 

  • Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20: 3021–3027.

    Article  PubMed  CAS  Google Scholar 

  • Hanson KK, Kelley AC, Bienz M (2005) Loss of Drosophila borealin causes polyploidy, delayed apoptosis and abnormal tissue development. Development 132: 4777–4787.

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348–360.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (2000) Heterochromatin function in complex genomes. Biochim Biophys Acta 1470: O1–O8.

    PubMed  CAS  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054–2060.

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438: 1176–1180.

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ et al. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Hsu JY, Sun ZW, Li X et al. (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102: 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149: 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113: 3217–3226.

    PubMed  CAS  Google Scholar 

  • Kato Y, Sasaki H (2005) Imprinting and looping: epigenetic marks control interactions between regulatory elements. Bioessays 27: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (2003) Phosphorylation of histone H3 during transcriptional activation depends on promoter structure. Genes Dev 17: 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Lerach S, Zhang W, Deng H et al. (2005) JIL-1 kinase, a member of the male-specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila. Genesis 43: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Lerach S, Zhang W, Bao X, Deng H, Girton J, Johansen J, Johansen KM (2006) Loss-of-function alleles of the JIL-1 kinase are strong suppressors of PEV at the w m4 locus in Drosophila. (Submitted.)

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55: 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Liu S-P, Ni J-Q, Shi Y-D, Oakeley EJ, Sun F-L (2005) Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet 37: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Lo W-S, Trievel RC, Rojas JR et al. (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5: 917–926.

    Article  PubMed  CAS  Google Scholar 

  • Lo W-S, Gamache ER, Henry KW, Yang D, Pillus L, Berger SL (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J 24: 997–1008.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39: 615–651.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65: 775–783.

    Article  PubMed  CAS  Google Scholar 

  • Mizzen C, Kuo M-H, Smith E et al. (1998) Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harbor Symp Quant Biol 63: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14: 3003–3013.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare K, Alley MR, Cullingford TE, Driver A, Sanderson MJ (1991) DNA sequence of the Doc retrotransposon in the white-1 mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivatives white-honey and white-eosin. Mol Gen Genet 225: 17–24.

    PubMed  CAS  Google Scholar 

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL (2003) Transcriptional activation: getting a grip on condensed chromatin. Curr Biol 13: R195–R197.

    Article  PubMed  CAS  Google Scholar 

  • Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116: 3677–3685.

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38: 413–443.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Krauss V et al. (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Dorn R, Reuter G (2003) Position effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin Cell Dev Biol 14: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak MA, Fry CJ, Peterson CL (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278: 15744–15748.

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Pannuti A, Gu W et al. (2000) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Smith PD, Lucchesi JC (1969) The role of sexuality in dosage compensation in Drosophila. Genetics 61: 607–618.

    PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Straub T, Gilfillan GD, Maier VK, Becker PB (2005) The Drosophila MSL complex activates the transcription of target genes. Genes Dev 19: 2284–2288.

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19: 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18: 4779–4793.

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145: 1341–1354.

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836–845.

    Article  PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not the maintenance, of mammalian chromosome condensation. J Cell Sci 111: 3497–3506.

    PubMed  Google Scholar 

  • Verdel A, Jia S, Gerber S et al. (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303: 672–676.

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 8: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1277.

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA 95: 7480–7484.

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Verma UN, Prajapati S, Kwak TY, Gaynor RB (2003) Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423: 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Fleming SL, Williams B et al. (2004) Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol 164: 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Zachar Z, Bingham PM (1982) Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell 30: 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Jin Y, Ji Y, Girton J, Johansen J, Johansen KM (2003) Genetic and phenotypic analysis of alleles of the Drosophila chromosomal JIL-1 kinase reveals a functional requirement at multiple developmental stages. Genetics 165: 1341–1354.

    PubMed  CAS  Google Scholar 

  • Zhang W, Deng H, Bao X et al. (2006) The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Makunin IV et al. (2003) Intercalary heterochromatin in Drosophila melanogaster polytene chromosomes and the problem of genetic silencing. Genetica 117: 259–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen M. Johansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, K.M., Johansen, J. Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14, 393–404 (2006). https://doi.org/10.1007/s10577-006-1063-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1063-4

Key words

Navigation