Skip to main content
Log in

The impact of genomic alterations on the transcriptome: a prostate cancer cell line case study

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Genetic instability may lead to the loss/gain of transcriptional control. Here we investigated the effect of genomic instability, that is loss/gain of chromosomal regions on the global transcriptome of prostate cancer cell line DU145. The genomic loss/gain map obtained through BAC array-based CGH was superimposed on the dynamic transcriptome of DU145 cells treated with serum for 0 h (serum starved), 2 h and 12 h. The genomic analysis suggested that in DU145 cells: (1) chromosomal gains are prominent than losses and (2) copy number changes are associated with chromosome-specific and dynamic gene expression regulatory mechanisms. A significant proportion of the genes in the stable regions of the chromosome were up-regulated whereas a higher proportion of genes were down-regulated at 2 and 12 h in the deleted regions of the chromosomes following serum treatment. No change in expression was observed for the genes in the gained regions over a period of time. This analysis led us to propose that loss of heterozygosity leads to an overall transcriptional down-regulation that may further lead to a decrease in the expression of putative tumor suppressors. The genomic profile of DU145 is similar to pathological specimens of prostate cancer, hence the genomic/transcriptomic signature of DU145 can be used to understand the pathology of prostate cancer. It is expected that this analysis will allow a better understanding of transcriptional regulatory mechanisms in the context of genomic loss and gain and may lead to the discovery of novel oncogenes and tumor suppressors and the underlying regulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson GR, Stoler DL, Brenner BM (2001) Cancer: the evolved consequence of a destabilized genome. Bioessays 23(11): 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Asirvatham AJ, Schmidt M, Gao B, Chaudhary J (2006) Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 147(1):257–271.

    Article  PubMed  CAS  Google Scholar 

  • Arnold JM, Mok SC, Purdie D, Chenevix-Trench G (2001) Decreased expression of the Id3 gene at 1p36.1 in ovarian adenocarcinomas. Br J Cancer 84(3): 352–359.

    Article  PubMed  CAS  Google Scholar 

  • Asirvatham AJ, Schmidt MA, Chaudhary J (2006) Non-redundant inhibitor of differentiation (Id) gene expression and function in human prostate epithelial cells. Prostate 2006 Mar 15; [Epub ahead of print].

  • Bayani JM, Squire JA (2002) Applications of SKY in cancer cytogenetics. Cancer Invest 20(3): 373–386.

    Article  PubMed  Google Scholar 

  • Bayani J, Brenton JD, Macgregor PF et al. (2002) Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res 62(12): 3466–3476.

    PubMed  CAS  Google Scholar 

  • Berthon P, Valeri A, Cohen-Akenine A et al. (1998) Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet 62(6): 1416–1424.

    Article  PubMed  CAS  Google Scholar 

  • Bignell GR, Huang J, Greshock J et al. (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 14(2): 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary J, Schmidt M, Sadler-Riggleman I (2005) Negative acting HLH proteins Id1, Id2, Id3, and Id4 are expressed in prostate epithelial cells. Prostate.

  • Cher ML, Bova GS, Moore DH et al. (1996) Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 56(13): 3091–3102.

    PubMed  CAS  Google Scholar 

  • Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH (1994) Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes Cancer 11(3): 153–162.

    PubMed  CAS  Google Scholar 

  • Chu LW, Troncoso P, Johnston DA, Liang JC (2003) Genetic markers useful for distinguishing between organ-confined and locally advanced prostate cancer. Genes Chromosomes Cancer 36(3): 303–312.

    Article  PubMed  CAS  Google Scholar 

  • Clark J, Edwards S, Feber A et al. (2003) Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 22(8): 1247–1252.

    Article  PubMed  CAS  Google Scholar 

  • Cowell JK (2004) High throughput determination of gains and losses of genetic material using high resolution BAC arrays and comparative genomic hybridization. Comb Chem High Throughput Screen 7(6): 587–596.

    PubMed  CAS  Google Scholar 

  • Crundwell MC, Chughtai S, Knowles M et al. (1996) Allelic loss on chromosomes 8p, 22q and 18q (DCC) in human prostate cancer. Int J Cancer 69(4): 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Cussenot O, Valeri A, Berthon P, Fournier G, Mangin P (1998) Hereditary prostate cancer and other genetic predispositions to prostate cancer. Urol Int 60(Suppl. 2): 30–34; discussion 35.

    Article  PubMed  Google Scholar 

  • Dong JT (2001) Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20(3–4): 173–193.

    Article  PubMed  CAS  Google Scholar 

  • du Manoir S, Speicher MR, Joos S et al. (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90(6): 590–610.

    Article  PubMed  Google Scholar 

  • El Gedaily A, Bubendorf L, Willi N et al. (2001) Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate 46(3): 184–190.

    Article  PubMed  Google Scholar 

  • Fritz B, Schubert F, Wrobel G et al. (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62(11): 2993–2998.

    PubMed  CAS  Google Scholar 

  • Fu W, Bubendorf L, Willi N et al. (2000) Genetic changes in clinically organ-confined prostate cancer by comparative genomic hybridization. Urology 56(5): 880–885.

    Article  PubMed  CAS  Google Scholar 

  • Garraway LA, Lin D, Signoretti S et al. (2003) Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55(3): 206–218.

    Article  PubMed  Google Scholar 

  • Gray JW, Collins C (2000) Genome changes and gene expression in human solid tumors. Carcinogenesis 21(3): 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Greshock J, Naylor TL, Margolin A et al. (2004) 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 14(1): 179–187.

    Article  PubMed  CAS  Google Scholar 

  • He WW, Sciavolino PJ, Wing J et al. (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43(1): 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Hyytinen ER, Thalmann GN, Zhau HE et al. (1997) Genetic changes associated with the acquisition of androgen-independent growth, tumorigenicity and metastatic potential in a prostate cancer model. Br J Cancer 75(2): 190–195.

    PubMed  CAS  Google Scholar 

  • James LA (1999) Comparative genomic hybridization as a tool in tumour cytogenetics. J Pathol 187(4): 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083): 818–821.

    PubMed  CAS  Google Scholar 

  • Kano M, Nishimura K, Ishikawa S et al. (2003) Expression imbalance map: a new visualization method for detection of mRNA expression imbalance regions. Physiol Genomics 13(1): 31–46.

    PubMed  CAS  Google Scholar 

  • Kasahara K, Taguchi T, Yamasaki I, Kamada M, Yuri K, Shuin T (2002) Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 137(1): 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim MS, Jensen RH (2000) Genetic alterations in microdissected prostate cancer cells by comparative genomic hybridization. Prostate Cancer Prostatic Dis 3(2): 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa K, Nomoto S, Yamashita K, Ishigure K, Takeda S, Nakao A (2004) Allelic imbalance at 1p36 in the pathogenesis of human hepatocellular carcinoma. Hepatogastroenterology 51(55): 186–191.

    PubMed  Google Scholar 

  • Lapuk A, Volik S, Vincent R et al. (2004) Computational BAC clone contig assembly for comprehensive genome analysis. Genes Chromosomes Cancer 40(1): 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Latil A, Baron JC, Cussenot O et al. (1994) Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 11(2): 119–125.

    PubMed  CAS  Google Scholar 

  • Lucito R, West J, Reiner A et al. (2000) Detecting gene copy number fluctuations in tumor cells by microarray analysis of genomic representations. Genome Res 10(11): 1726–1736.

    Article  PubMed  CAS  Google Scholar 

  • Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP (2004) Genomic microarrays in the spotlight. Trends Genet 20(2): 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Melcher R, Koehler S, Steinlein C et al. (2002) Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway. Cytogenet Genome Res 98(1): 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Nakao K, Mehta KR, Fridlyand J et al. (2004) High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 25(8): 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  • Nupponen NN, Visakorpi T (2000) Molecular cytogenetics of prostate cancer. Microsc Res Tech 51(5): 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Nupponen NN, Hyytinen ER, Kallioniemi AH, Visakorpi T (1998) Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet Cytogenet 101(1): 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Padalecki SS, Johnson-Pais TL, Killary AM, Leach RJ (2001) Chromosome 18 suppresses the tumorigenicity of prostate cancer cells. Genes Chromosomes Cancer 30(3): 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Padalecki SS, Weldon KS, Reveles XT et al. (2003) Chromosome 18 suppresses prostate cancer metastases. Urol Oncol 21(5): 366–373.

    PubMed  CAS  Google Scholar 

  • Pan Y, Lui WO, Nupponen N et al. (2001) 5q11, 8p11, and 10q22 are recurrent chromosomal breakpoints in prostate cancer cell lines. Genes Chromosomes Cancer 30(2): 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Phillips JL, Hayward SW, Wang Y et al. (2001) The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis. Cancer Res 61(22): 8143–8149.

    PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2): 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Pollack JR, Perou CM, Alizadeh AA et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23(1): 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Pollack JR, Sorlie T, Perou CM et al. (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99(20): 12963–12968.

    Article  PubMed  CAS  Google Scholar 

  • Riva P, Crosti F, Orzan F et al. (2003) Mapping of candidate region for chordoma development to 1p36.13 by LOH analysis. Int J Cancer 107(3): 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AA (1992) Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 23(4): 368–380.

    Article  PubMed  CAS  Google Scholar 

  • Saramaki O, Willi N, Bratt O et al. (2001) Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol 159(6): 2089–2094.

    PubMed  CAS  Google Scholar 

  • Sattler HP, Rohde V, Bonkhoff H, Zwergel T, Wullich B (1999) Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate 39(2): 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Savinainen KJ, Linja MJ, Saramaki OR et al. (2004) Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer 90(5): 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  • Snijders AM, Nowak N, Segraves R et al. (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29(3): 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Steiner T, Junker K, Burkhardt F, Braunsdorf A, Janitzky V, Schubert J (2002) Gain in chromosome 8q correlates with early progression in hormonal treated prostate cancer. Eur Urol 41(2): 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21(3): 274–281.

    PubMed  CAS  Google Scholar 

  • Strefford JC, Lillington DM, Young BD, Oliver RT (2001) The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data. Cancer Genet Cytogenet 124(2): 112–121.

    Article  PubMed  CAS  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748): 644–648.

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Komiya A, Emi M et al. (1997) Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosomes Cancer 20(2): 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Ulger C, Toruner GA, Alkan M et al. (2003) Comprehensive genome-wide comparison of DNA and RNA level scan using microarray technology for identification of candidate cancer-related genes in the HL-60 cell line. Cancer Genet Cytogenet 147(1): 28–35.

    Article  PubMed  CAS  Google Scholar 

  • van Dekken H, Alers JC, Damen IA et al. (2003) Genetic evaluation of localized prostate cancer in a cohort of forty patients: gain of distal 8q discriminates between progressors and nonprogressors. Lab Invest 83(6): 789–796.

    PubMed  Google Scholar 

  • Van Dekken H, Krijtenburg PJ, Alers JC (2000) DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations. Acta Histochem 102(1): 85–94.

    Article  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9(4): 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Mousses S, Hautaniemi S et al. (2004) High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6(3): 240–247.

    PubMed  CAS  Google Scholar 

  • Yano S, Matsuyama H, Matsuda K, Matsumoto H, Yoshihiro S, Naito K (2004) Accuracy of an array comparative genomic hybridization (CGH) technique in detecting DNA copy number aberrations: comparison with conventional CGH and loss of heterozygosity analysis in prostate cancer. Cancer Genet Cytogenet 150(2): 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Zhou CZ, Qiu GQ, Zhang F, He L, Peng ZH (2004) Loss of heterozygosity on chromosome 1 in sporadic colorectal carcinoma. World J Gastroenterol 10(10): 1431–1435.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, J., Schmidt, M. The impact of genomic alterations on the transcriptome: a prostate cancer cell line case study. Chromosome Res 14, 567–586 (2006). https://doi.org/10.1007/s10577-006-1055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1055-4

Key words

Navigation