Skip to main content

Advertisement

Log in

Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and KATP Channel in Mouse Neurons

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-d-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets of the current study are available upon request with no restriction.

References

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  CAS  Google Scholar 

  • Bickler PE, Donohoe PH, Buck LT (2000) Hypoxia-induced silencing of NMDA receptors in turtle neurons. J Neurosci 20(10):3522–3528

    Article  CAS  Google Scholar 

  • Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111(9):1237–1247

    Article  CAS  Google Scholar 

  • Brierley GP (1976) The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 10(1):41–63

    Article  CAS  Google Scholar 

  • Carden DL, Granger DN (2000) Pathophysiology of ischaemia–reperfusion injury. J Pathol 190(3):255–266

    Article  CAS  Google Scholar 

  • Drose S, Brandt U, Hanley PJ (2006) K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem 281(33):23733–23739

    Article  Google Scholar 

  • Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, Terzic A (2003) Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol 284(4):H1048–H1056

    Article  CAS  Google Scholar 

  • Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606(1–3):1–21

    CAS  PubMed  Google Scholar 

  • Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542(Pt 3):735–741

    Article  CAS  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195(2):460–467

    Article  CAS  Google Scholar 

  • Hawrysh PJ, Buck LT (2013) Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons. J Exp Biol 216(Pt 23):4375–4387

    Article  CAS  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195(2):453–459

    Article  CAS  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195(2):468–477

    Article  CAS  Google Scholar 

  • Jiang X, Shi E, Nakajima Y, Sato S (2006) Postconditioning, a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann Surg 244(1):148–153

    Article  Google Scholar 

  • Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87(4):969–980

    Article  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528(1):21–24

    Article  CAS  Google Scholar 

  • Kristian T, Siesjo BK (1998) Calcium in ischemic cell death. Stroke J Cereb Circ 29(3):70

    Article  Google Scholar 

  • Lee JJ, Li L, Jung HH, Zuo Z (2008) Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology 108(6):1055–1062

    Article  CAS  Google Scholar 

  • Liang HW, Xia Q, Bruce IC (2005) Reactive oxygen species mediate the neuroprotection conferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia in the rat hippocampal slice. Brain Res 1042(2):169–175. https://doi.org/10.1016/j.brainres.2005.02.031

    Article  CAS  PubMed  Google Scholar 

  • Lim KH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP (2002) The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol 545(3):961–974

    Article  CAS  Google Scholar 

  • Mayor D, Tymianski M (2018) Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 134(Pt B):178–188

    Article  CAS  Google Scholar 

  • Nagai N, Yoshioka C, Ito Y, Funakami Y, Nishikawa H, Kawabata A (2015) Intravenous administration of cilostazol nanoparticles ameliorates acute ischemic stroke in a cerebral ischemia/reperfusion-induced injury model. Int J Mol Sci 16(12):29329–29344

    Article  CAS  Google Scholar 

  • Nakagawa I, Nakase H, Aketa S, Kamada Y, Yamashita M, Sakaki T (2002) ATP-dependent potassium channel mediates neuroprotection by chemical preconditioning with 3-nitropropionic acid in gerbil hippocampus. Neurosci Lett 320(1–2):33–36

    Article  CAS  Google Scholar 

  • Nour M, Scalzo F, Liebeskind DS (2013) Ischemia–reperfusion injury in stroke. Interv Neurol 1(3–4):185–199

    PubMed  PubMed Central  Google Scholar 

  • Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787(5):345–350

    Article  CAS  Google Scholar 

  • Pain T, Yang X-M, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87(6):460–466

  • Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G (2011) Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res 1375:137–146

    Article  CAS  Google Scholar 

  • Sun J, Luan Q, Dong H, Song W, Xie K, Hou L, Xiong L (2012) Inhibition of mitochondrial permeability transition pore opening contributes to the neuroprotective effects of ischemic postconditioning in rats. Brain Res 1436:101–110

    Article  CAS  Google Scholar 

  • Szabo I, Leanza L, Gulbins E, Zoratti M (2012) Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 463(2):231–246

    Article  CAS  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    Article  CAS  Google Scholar 

  • Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, McMillan DGG, Gerle C, Szabo I, Bernardi P (2019) Purified F-ATP synthase forms a Ca(2+)-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 10(1):4341

    Article  Google Scholar 

  • Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, Bruce IC, Luo BY, Xia Q (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke J Cereb Circ 39(3):983–990

    Article  Google Scholar 

  • Yin XH, Zhang QG, Miao B, Zhang GY (2005) Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. J Neurochem 93(4):1021–1029

    Article  CAS  Google Scholar 

  • Yokoyama S, Nakagawa I, Ogawa Y, Morisaki Y, Motoyama Y, Park YS, Saito Y, Nakase H (2019) Ischemic postconditioning prevents surge of presynaptic glutamate release by activating mitochondrial ATP-dependent potassium channels in the mouse hippocampus. PLoS ONE 14(4):e0215104

    Article  CAS  Google Scholar 

  • Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 26(9):1114–1121

    Article  CAS  Google Scholar 

  • Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29(5):873–885

    Article  CAS  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, Brann D, Wang R (2015) Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus 25(3):286–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by JSPS KAKENHI Grant Number JP16K10735.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design or analysis and interpretation of data, or both; YM, IN, YO. Drafting of the manuscript or revising it critically for important intellectual content; YM, IN, YO, SY, TF, YS, HN. Final approval of the manuscript submitted; IN, YS, HN.

Corresponding author

Correspondence to Ichiro Nakagawa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2020_996_MOESM1_ESM.tif

(TIF 126158 kb) Supplementary Fig. 1 Representative microphotographs showing changes in Fura-2 emissions resulting from excitation at 340 and 380 nm for the control group. The elevation in the Fura-2 ratio (340/380 ratio) represents an increase in cytosolic Ca2+ concentration. Scale bar 10 µm

10571_2020_996_MOESM2_ESM.tif

(TIF 48504 kb) Supplementary Fig. 2 Representative microphotographs of JC1 fluorescence in a hippocampal slice for the control group. Left: infrared differential interference contrast image; Middle: green fluorescent image excited at 477 nm; Right: red fluorescent image excited at 548 nm. Scale bar 10 µm

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morisaki, Y., Nakagawa, I., Ogawa, Y. et al. Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and KATP Channel in Mouse Neurons. Cell Mol Neurobiol 42, 1079–1089 (2022). https://doi.org/10.1007/s10571-020-00996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00996-y

Keywords

Navigation