Skip to main content
Log in

Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Valproate (VPA), a widely-used antiepileptic drug, is a selective inhibitor of histone deacetylase (HDAC) that play important roles in epigenetic regulation. The patient with different diseases receiving this drug tend to exhibit weight gain and abnormal metabolic phenotypes, but the underlying mechanisms remain largely unknown. Here we show that VPA increases the Fto mRNA and protein expression in mouse hypothalamic GT1-7 cells. Interestingly, VPA promotes histone H3/H4 acetylation and the FTO expression which could be reversed by C646, an inhibitor for histone acetyltransferase. Furthermore, VPA weakens the FTO’s binding and enhances the binding of transcription factor TAF1 to the Fto promoter, and C646 leads to reverse effect of the VPA, suggesting an involvement of the dynamic of histone H3/H4 acetylation in the regulation of FTO expression. In addition, the mice exhibit an increase in the food intake and body weight at the beginning of 2-week treatment with VPA. Simultaneously, in the hypothalamus of the VPA-treated mice, the FTO expression is upregulated and the H3/H4 acetylation is increased; further the FTO’s binding to the Fto promoter is decreased and the TAF1′s binding to the promoter is enhanced, suggesting that VPA promotes the assembly of the basal transcriptional machinery of the Fto gene. Finally, the inhibitor C646 could restore the effects of VPA on FTO expression, H3/H4 acetylation, body weight, and food intake; and loss of FTO could reverse the VPA-induced increase of body weight and food intake. Taken together, this study suggests an involvement of VPA in the epigenetic upregulation of hypothalamic FTO expression that is potentially associated with the VPA-induced weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aizawa S, Yamamuro Y (2015) Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. NeuroReport 26:915–920

    Article  CAS  PubMed  Google Scholar 

  • Anmella G, Pacchiarotti I, Cubala WJ, Dudek D, Maina G, Thomas P, Vieta E (2019) Expert advice on the management of valproate in women with bipolar disorder at childbearing age. Eur Neuropsychopharmacol 29:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Asghari V, Wang JF, Reiach JS, Young LT (1998) Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 58:95–102

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Xu C, Wen D, Chen Y, Li H, Wang X, Zhou L, Huang M, Jin J (2018) Polymorphisms of peroxisome proliferator-activated receptor gamma (PPARgamma) and cluster of differentiation 36 (CD36) associated with valproate-induced obesity in epileptic patients. Psychopharmacology 235:2665–2673

    Article  CAS  PubMed  Google Scholar 

  • Baldino F Jr, Geller HM (1981) Effect of sodium valproate on hypothalamic neurons in vivo and in vitro. Brain Res 219:231–237

    Article  CAS  PubMed  Google Scholar 

  • Barness LA, Opitz JM, Gilbert-Barness E (2007) Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A 143A:3016–3034

    Article  CAS  PubMed  Google Scholar 

  • Bravard A, Vial G, Chauvin MA, Rouille Y, Bailleul B, Vidal H, Rieusset J (2014) FTO contributes to hepatic metabolism regulation through regulation of leptin action and STAT3 signalling in liver. Cell Commun Signal 12:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown R, Imran SA, Ur E, Wilkinson M (2008) Valproic acid and CEBPalpha-mediated regulation of adipokine gene expression in hypothalamic neurons and 3T3-L1 adipocytes. Neuroendocrinology 88:25–34

    Article  CAS  PubMed  Google Scholar 

  • Cartocci V, Tonini C, Di Pippo T, Vuono F, Schiavi S, Marino M, Trezza V, Pallottini V (2019) Prenatal exposure to valproate induces sex-, age-, and tissue-dependent alterations of cholesterol metabolism: Potential implications on autism. J Cell Physiol 234:4362–4374

    Article  CAS  PubMed  Google Scholar 

  • Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN (2008) An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med 359:2558–2566

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK (1999) Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res 64:52–58

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu C, Guo M, Zheng X, Ali S, Huang H, Zhang L, Wang S, Huang Y, Qie S, Wang J (2019) Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci 10:2355–2363

    Article  CAS  PubMed  Google Scholar 

  • Cheung MK, Gulati P, O'Rahilly S, Yeo GS (2013) FTO expression is regulated by availability of essential amino acids. Int J Obes (London) 37:744–747

    Article  CAS  Google Scholar 

  • Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T, Lee A, Moir L, Mecinovic J, Quwailid MM, Schofield CJ, Ashcroft FM, Cox RD (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5:e1000599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Bruning JC, Nolan PM, Ashcroft FM, Cox RD (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicek NP, Kamasak T, Serin M, Okten A, Alver A, Cansu A (2018) The effects of valproate and topiramate use on serum insulin, leptin, neuropeptide Y and ghrelin levels in epileptic children. Seizure 58:90–95

    Article  PubMed  Google Scholar 

  • Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougneres P, Kovacs P, Marre M, Balkau B, Cauchi S, Chevre JC, Froguel P (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726

    Article  CAS  PubMed  Google Scholar 

  • Dong E, Chen Y, Gavin DP, Grayson DR, Guidotti A (2010) Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics 5:730–735

    Article  CAS  PubMed  Google Scholar 

  • Dyrvig M, Qvist P, Lichota J, Larsen K, Nyegaard M, Borglum AD, Christensen JH (2017) DNA methylation analysis of BRD1 promoter regions and the schizophrenia rs138880 risk allele. PLoS ONE 12:e0170121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyrvig M, Mikkelsen JD, Lichota J (2019) DNA methylation regulates CHRNA7 transcription and can be modulated by valproate. Neurosci Lett 704:145–152

    Article  CAS  PubMed  Google Scholar 

  • Fan HQ, He W, Xu KF, Wang ZX, Xu XY, Chen H (2015) FTO inhibits insulin secretion and promotes NF-kappaB activation through positively regulating ROS production in pancreatic beta cells. PLoS ONE 10:e0127705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, Ruther U (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898

    Article  CAS  PubMed  Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM, Levine AS, Lindblom J, Schioth HB (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149:2062–2071

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65:35–43

    Article  CAS  PubMed  Google Scholar 

  • Gao MM, Hu F, Zeng XD, Tang HL, Zhang H, Jiang W, Yan HJ, Shi H, Shu Y, Long YS (2020) Hypothalamic proteome changes in response to nicotine and its withdrawal are potentially associated with alteration in body weight. J Proteom 214:103633

    Article  CAS  Google Scholar 

  • Garoufi A, Vartzelis G, Tsentidis C, Attilakos A, Koemtzidou E, Kossiva L, Katsarou E, Soldatou A (2016) Weight gain in children on oxcarbazepine monotherapy. Epilepsy Res 122:110–113

    Article  CAS  PubMed  Google Scholar 

  • Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, Galvanovskis J, Rorsman P, Robins P, Prieur X, Coll AP, Ma M, Jovanovic Z, Farooqi IS, Sedgwick B, Barroso I, Lindahl T, Ponting CP, Ashcroft FM, O'Rahilly S, Schofield CJ (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology 185:255–262

    Article  CAS  PubMed  Google Scholar 

  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AL, Zhan L, Eid A, Zarbl H, Guo GL, Richardson JR (2017) Valproate increases dopamine transporter expression through histone acetylation and enhanced promoter binding of Nurr1. Neuropharmacology 125:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grootens KP, Meijer A, Hartong EG, Doornbos B, Bakker PR, Al Hadithy A, Hoogerheide KN, Overmeire F, Marijnissen RM, Ruhe HG (2018) Weight changes associated with antiepileptic mood stabilizers in the treatment of bipolar disorder. Eur J Clin Pharmacol 74:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Grosso S, Mostardini R, Piccini B, Balestri P (2009) Body mass index and serum lipid changes during treatment with valproic acid in children with epilepsy. Ann Pharmacother 43:45–50

    Article  PubMed  Google Scholar 

  • Grunnet LG, Nilsson E, Ling C, Hansen T, Pedersen O, Groop L, Vaag A, Poulsen P (2009) Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes 58:2402–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30:55–60

    Article  CAS  PubMed  Google Scholar 

  • Hamed SA (2015) Antiepileptic drugs influences on body weight in people with epilepsy. Expert Rev Clin Pharmacol 8:103–114

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, Cheng W, Wang J, Feng Y, Chai J (2010) Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Bronneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Ruther U, Jaffrey SR, Kloppenburg P, Bruning JC (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Fu Y, He C (2012a) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29:108–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2012b) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  Google Scholar 

  • Karra E, O'Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, Scott WR, Chandarana K, Manning S, Hess ME, Iwakura H, Akamizu T, Millet Q, Gelegen C, Drew ME, Rahman S, Emmanuel JJ, Williams SC, Ruther UU, Bruning JC, Withers DJ, Zelaya FO, Batterham RL (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest 123:3539–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhanpal D, Kaur G (2007) Valproic acid alters GnRH-GABA interactions in cycling female rats. Cell Mol Neurobiol 27:1069–1083

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z, Deng Y (2019) The role of mRNA m(6)A methylation in the nervous system. Cell Biosci 9:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SJ, Tang HL, He Q, Lu P, Fu T, Xu XL, Su T, Gao MM, Duan S, Luo Y, Long YS (2019) FTO is a transcriptional repressor to auto-regulate its own gene and potentially associated with homeostasis of body weight. J Mol Cell Biol 11:118–132

    Article  CAS  PubMed  Google Scholar 

  • Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman AK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stancakova A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Arnlov J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Bluher M, Bohringer S, Bonnycastle LL, Bottcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen AJM, Delgado G, Dimitriou M et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins MC, Trujillo J, Freitas-Vilela AA, Farias DR, Rosado EL, Struchiner CJ, Kac G (2018) Associations between obesity candidate gene polymorphisms (fat mass and obesity-associated (FTO), melanocortin-4 receptor (MC4R), leptin (LEP) and leptin receptor (LEPR)) and dietary intake in pregnant women. Br J Nutr 120:454–463

    Article  CAS  PubMed  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milutinovic S, D'Alessio AC, Detich N, Szyf M (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28:560–571

    Article  CAS  PubMed  Google Scholar 

  • Mizuno TM, Lew PS, Luo Y, Leckstrom A (2017) Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin. Life Sci 170:50–55

    Article  CAS  PubMed  Google Scholar 

  • Nowacka-Woszuk J, Pruszynska-Oszmalek E, Szydlowski M, Szczerbal I (2017) Nutrition modulates Fto and Irx3 gene transcript levels, but does not alter their DNA methylation profiles in rat white adipose tissues. Gene 610:44–48

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Poritsanos NJ, Lew PS, Fischer J, Mobbs CV, Nagy JI, Wong D, Ruther U, Mizuno TM (2011) Impaired hypothalamic Fto expression in response to fasting and glucose in obese mice. Nutr Diabetes 1:e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pylvanen V, Knip M, Pakarinen A, Kotila M, Turkka J, Isojarvi JI (2002) Serum insulin and leptin levels in valproate-associated obesity. Epilepsia 43:514–517

    Article  CAS  PubMed  Google Scholar 

  • Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D (2018) On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev 19:121–149

    Article  CAS  PubMed  Google Scholar 

  • Qiu HM, Yang JX, Liu D, Fei HZ, Hu XY, Zhou QX (2014) Antidepressive effect of sodium valproate involving suppression of corticotropin-releasing factor expression and elevation of BDNF expression in rats exposed to chronic unpredicted stress. NeuroReport 25:205–210

    Article  CAS  PubMed  Google Scholar 

  • Rakitin A, Koks S, Haldre S (2015) Valproate modulates glucose metabolism in patients with epilepsy after first exposure. Epilepsia 56:e172–e175

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Tiraihi T, Abdanipour A, Hassoun HK, Taheri T (2018) Immunocytochemical analysis of valproic acid induced histone H3 and H4 acetylation during differentiation of rat adipose derived stem cells into neuron-like cells. Biotech Histochem 93:589–600

    Article  CAS  PubMed  Google Scholar 

  • Rocha MA, Veronezi GMB, Felisbino MB, Gatti MSV, Tamashiro W, Mello MLS (2019) Sodium valproate and 5-aza-2'-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci Rep 9:18236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronkainen J, Huusko TJ, Soininen R, Mondini E, Cinti F, Makela KA, Kovalainen M, Herzig KH, Jarvelin MR, Sebert S, Savolainen MJ, Salonurmi T (2015) Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Sci Rep 5:9233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosati A, Ilvento L, Lucenteforte E, Pugi A, Crescioli G, McGreevy KS, Virgili G, Mugelli A, De Masi S, Guerrini R (2018) Comparative efficacy of antiepileptic drugs in children and adolescents: a network meta-analysis. Epilepsia 59:297–314

    Article  CAS  PubMed  Google Scholar 

  • Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sidhu HS, Sadhotra A (2016) Current status of the new antiepileptic drugs in chronic pain. Front Pharmacol 7:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nobrega MA (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratigopoulos G, Burnett LC, Rausch R, Gill R, Penn DB, Skowronski AA, LeDuc CA, Lanzano AJ, Zhang P, Storm DR, Egli D, Leibel RL (2016) Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest 126:1897–1910

    Article  PubMed  PubMed Central  Google Scholar 

  • Su D, Hu Q, Li Q, Thompson JR, Cui G, Fazly A, Davies BA, Botuyan MV, Zhang Z, Mer G (2012) Structural basis for recognition of H3K56-acetylated histone H3–H4 by the chaperone Rtt106. Nature 483:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan NN, Tang HL, Lin GW, Chen YH, Lu P, Li HJ, Gao MM, Zhao QH, Yi YH, Liao WP, Long YS (2017) Epigenetic downregulation of Scn3a expression by valproate: a possible role in its anticonvulsant activity. Mol Neurobiol 54:2831–2842

    Article  CAS  PubMed  Google Scholar 

  • Taneera J, Prasad RB, Dhaiban S, Mohammed AK, Haataja L, Arvan P, Hamad M, Groop L, Wollheim CB (2018) Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol Cell Endocrinol 472:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokgoz H, Aydin K, Oran B, Kiyici A (2012) Plasma leptin, neuropeptide Y, ghrelin, and adiponectin levels and carotid artery intima media thickness in epileptic children treated with valproate. Childs Nerv Syst 28:1049–1053

    Article  PubMed  Google Scholar 

  • Tringali G, Aubry JM, Moscianese K, Zamori C, Vairano M, Preziosi P, Navarra P, Pozzoli G (2004) Valproic acid inhibits corticotropin-releasing factor synthesis and release from the rat hypothalamus in vitro: evidence for the involvement of GABAergic neurotransmission. J Psychiatry Neurosci 29:459–466

    PubMed  PubMed Central  Google Scholar 

  • Tung YC, Ayuso E, Shan X, Bosch F, O'Rahilly S, Coll AP, Yeo GS (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS ONE 5:e8771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verrotti A, la Torre R, Trotta D, Mohn A, Chiarelli F (2009) Valproate-induced insulin resistance and obesity in children. Horm Res 71:125–131

    Article  CAS  PubMed  Google Scholar 

  • Verrotti A, D'Egidio C, Mohn A, Coppola G, Chiarelli F (2011) Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev 12:e32–43

    Article  CAS  PubMed  Google Scholar 

  • Voudris K, Attilakos A, Katsarou E, Mastroyianni S, Dimou S, Skardoutsou A, Prassouli A, Garoufi A (2006) Serum total amylase, pancreatic amylase and lipase activities in epileptic children treated with sodium valproate monotherapy. Brain Dev 28:572–575

    Article  PubMed  Google Scholar 

  • Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, Rose LM, Thorleifsson G, Steinthorsdottir V, Magi R, Waite L, Smith AV, Yerges-Armstrong LM, Monda KL, Hadley D, Mahajan A, Li G, Kapur K, Vitart V, Huffman JE, Wang SR, Palmer C, Esko T, Fischer K, Zhao JH, Demirkan A, Isaacs A, Feitosa MF, Luan J, Heard-Costa NL, White C, Jackson AU, Preuss M, Ziegler A, Eriksson J, Kutalik Z, Frau F, Nolte IM, Van Vliet-Ostaptchouk JV, Hottenga JJ, Jacobs KB, Verweij N, Goel A, Medina-Gomez C, Estrada K, Bragg-Gresham JL, Sanna S, Sidore C, Tyrer J, Teumer A, Prokopenko I, Mangino M, Lindgren CM, Assimes TL, Shuldiner AR, Hui J, Beilby JP, McArdle WL, Hall P, Haritunians T, Zgaga L, Kolcic I, Polasek O, Zemunik T, Oostra BA, Junttila MJ, Gronberg H, Schreiber S, Peters A, Hicks AA, Stephens J, Foad NS, Laitinen J, Pouta A, Kaakinen M, Willemsen G, Vink JM, Wild SH, Navis G, Asselbergs FW, Homuth G, John U, Iribarren C, Harris T, Launer L, Gudnason V, O'Connell JR, Boerwinkle E, Cadby G, Palmer LJ, James AL, Musk AW, Ingelsson E, Psaty BM, Beckmann JS, Waeber G, Vollenweider P, Hayward C, Wright AF, Rudan I et al (2012) FTO genotype is associated with phenotypic variability of body mass index. Nature 490:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Zhang L, Tang B, Han W, Zhou Y, Chen Z, Jia D, Jiang H (2013) Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. PLoS ONE 8:e54792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chu X, Wang H, Xie H, Guo C, Cao L, Zhou X, Wang G, Hao H (2013) Dysregulations of UDP-glucuronosyltransferases in rats with valproic acid and high fat diet induced fatty liver. Eur J Pharmacol 721:277–285

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Gao J, Liang S, Wang X, Sun C, Xia W, Hao Y, Li X, Cao Y, Wu L (2015) Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate-induced autism model. Int J Dev Neurosci 44:14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Shu-Jing Liu (Guangzhou Sports University, Guangzhou China) for kindly providing the C57BL/6J Fto knockout mice and the C57BL/6J wild-type mice. This work was supported by Grants from the Guangzhou Science and Technology Program Key Projects (201804020046), the Innovative Academic Teams of Guangzhou Education System (1201610025), the National Natural Science Foundation of China (Grant Number 81671112).

Author information

Authors and Affiliations

Authors

Contributions

HZ and YSL conceived and designed the experiments. HZ, PL, HLT, WJ, HS, SYC, MMG and XDZ performed experiments. HZ and PL interpreted primary data and edited the manuscript. YSL wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yue-Sheng Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Lu, P., Tang, HL. et al. Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cell Mol Neurobiol 41, 1257–1269 (2021). https://doi.org/10.1007/s10571-020-00895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00895-2

Keywords

Navigation