Skip to main content

Advertisement

Log in

CRHR1 Mediates the Up-Regulation of Synapsin I Induced by Nesfatin-1 Through ERK 1/2 Signaling in SH-SY5Y Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The anorexigenic molecule nesfatin-1 has recently been taken as a potential mood regulator, but the potential mechanisms remain unknown. Results of our previous study have demonstrated that nesfatin-1 could induce anxiety- and depression-like behaviors in rats, accompanied by the hyperactivity of the hypothalamic–pituitary–adrenal axis and the imbalanced mRNA expression of synaptic vesicle proteins. To explore the potential neurobiological mechanism underlying the effect of nesfatin-1 on the synaptic plasticity, the human neuroblastoma SH-SY5Y cells were cultured and treated with different concentrations of nesfatin-1 in the present study. The mRNA and protein expressions of corticotropin-releasing hormone (CRH) were measured via real-time fluorescent quantitative PCR and western blot, respectively. The protein expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated-ERK1/2 (p-ERK1/2), and synapsin I were detected via western blot. The results confirmed that nesfatin-1 (10−9~10−7 mol/L) could up-regulate the expression of CRH. Moreover, nesfatin-1 (10−9~10−7 mol/L) could also increase the protein expressions of p-ERK1/2 and synapsin I, and these effects could be blocked by CP376395, a selective antagonist of CRH type 1 receptor (CRHR1). Furthermore, the increased expression of synapsin I induced by nesfatin-1 could also be reversed by PD98059, a specific inhibitor of the p-ERK. These results indicated that CRHR1 might mediate the effect of nesfatin-1 on the expressions of synapsin I via ERK1/2 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ari M, Ozturk OH, Bez Y, Oktar S, Erduran D (2011) High plasma nesfatin-1 level in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr 35(2):497–500. doi:10.1016/j.pnpbp.2010.12.004

    Article  CAS  Google Scholar 

  • Borges G, Berrocoso E, Mico JA, Neto F (2015) ERK1/2: function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatr 60:77–92. doi:10.1016/j.pnpbp.2015.02.010

    Article  CAS  Google Scholar 

  • Cavarec L, Vincent L, Le Borgne C, Plusquellec C, Ollivier N, Normandie-Levi P, Allemand F, Salvetat N, Mathieu-Dupas E, Molina F, Weissmann D, Pujol JF (2013) In vitro screening for drug-induced depression and/or suicidal adverse effects: a new toxicogenomic assay based on CE-SSCP analysis of HTR2C mRNA editing in SH-SY5Y cells. Neurotox Res 23(1):49–62. doi:10.1007/s12640-012-9324-9

    Article  CAS  PubMed  Google Scholar 

  • Cheng SJ, Chen CC, Yang HW, Chang YT, Bai SW, Chen CC, Yen CT, Min MY (2011) Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci 31(6):2258–2270. doi:10.1523/JNEUROSCI.5564-10.2011

    Article  CAS  PubMed  Google Scholar 

  • de la Tremblaye PB, Linares NN, Schock S, Plamondon H (2016) Activation of CRHR1 receptors regulates social and depressive-like behaviors and expression of BDNF and TrkB in mesocorticolimbic regions following global cerebral ischemia. Exp Neurol 284:84–97. doi:10.1016/j.expneurol.2016.07.019

    Article  PubMed  Google Scholar 

  • Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN (2002) Corticotropin-releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen-activated protein kinase. J Biol Chem 277(14):12280–12287. doi:10.1074/jbc.M111236200

    Article  CAS  PubMed  Google Scholar 

  • Doo AR, Kim SN, Kim ST, Park JY, Chung SH, Choe BY, Chae Y, Lee H, Yin CS, Park HJ (2012) Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death. Brain Res 1429:106–115. doi:10.1016/j.brainres.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  • Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiat 61(5):661–670. doi:10.1016/j.biopsych.2006.05.047

    Article  CAS  PubMed  Google Scholar 

  • First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–255. doi:10.1007/s12031-011-9515-5

    Article  CAS  PubMed  Google Scholar 

  • Foo KS, Brismar H, Broberger C (2008) Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience 156(3):563–579. doi:10.1016/j.neuroscience.2008.07.054

    Article  CAS  PubMed  Google Scholar 

  • Ge JF, Xu YY, Qin G, Pan XY, Chen JQ, Chen FH (2015a) Nesfatin-1, a potent anorexic agent, decreases exploration and induces anxiety-like behavior in rats without altering learning or memory. Brain Res. doi:10.1016/j.brainres.2015.10.027

    Google Scholar 

  • Ge JF, Xu YY, Qin G, Peng YN, Zhang CF, Liu XR, Liang LC, Wang ZZ, Chen FH (2015b) Depression-like behavior induced by nesfatin-1 in rats: involvement of increased immune activation and imbalance of synaptic vesicle proteins. Front Neurosci 9:429. doi:10.3389/fnins.2015.00429

    Article  PubMed  PubMed Central  Google Scholar 

  • Goebel-Stengel M, Wang L (2013) Central and peripheral expression and distribution of NUCB2/nesfatin-1. Curr Pharm Des 19(39):6935–6940

    Article  CAS  PubMed  Google Scholar 

  • Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13(10):436–444

    Article  CAS  PubMed  Google Scholar 

  • Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol 9(5):544–553. doi:10.1016/S0959-4388(99)00010-0

    Article  CAS  PubMed  Google Scholar 

  • Grimm S, Wirth K, Fan Y, Weigand A, Gartner M, Feeser M, Dziobek I, Bajbouj M, Aust S (2017) The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy. Behav Brain Res 329:180–185. doi:10.1016/j.bbr.2017.04.047

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Stengel A, Ahnis A, Busse P, Elbelt U, Klapp BF (2013) NUCB2/nesfatin-1 is associated with elevated scores of anxiety in female obese patients. Psychoneuroendocrinology 38(11):2502–2510. doi:10.1016/j.psyneuen.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci USA 93(8):3679–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149(3):1295–1301. doi:10.1210/en.2007-1276

    Article  CAS  PubMed  Google Scholar 

  • Konczol K, Bodnar I, Zelena D, Pinter O, Papp RS, Palkovits M, Nagy GM, Toth ZE (2010) Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic–pituitary–adrenal axis in rats. Neurochem Int 57(3):189–197. doi:10.1016/j.neuint.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  • Kovalovsky D, Refojo D, Liberman AC, Hochbaum D, Pereda MP, Coso OA, Stalla GK, Holsboer F, Arzt E (2002) Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol 16(7):1638–1651. doi:10.1210/mend.16.7.0863

    Article  CAS  PubMed  Google Scholar 

  • Liao XM, Yang XD, Jia J, Li JT, Xie XM, Su YA, Schmidt MV, Si TM, Wang XD (2014) Blockade of corticotropin-releasing hormone receptor 1 attenuates early-life stress-induced synaptic abnormalities in the neonatal hippocampus. Hippocampus 24(5):528–540. doi:10.1002/hipo.22254

    Article  CAS  PubMed  Google Scholar 

  • Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443(7112):709–712. doi:10.1038/nature05162

    Article  Google Scholar 

  • Pan W, Hsuchou H, Kastin AJ (2007) Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides 28(11):2223–2228. doi:10.1016/j.peptides.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Zhong P, Sun D, Liu QS (2011) Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects. J Neurosci 31(31):11244–11255. doi:10.1523/JNEUROSCI.1040-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 28(12):2372–2381. doi:10.1016/j.peptides.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  • Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, Lambrecht NW, Tache Y (2009) Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology 150(11):4911–4919. doi:10.1210/en.2009-0578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194. doi:10.1016/j.arr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  • Thiels E, Klann E (2001) Extracellular signal-regulated kinase, synaptic plasticity, and memory. Rev Neurosci 12(4):327–345

    Article  CAS  PubMed  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183. doi:10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  • Todorovic C, Sherrin T, Pitts M, Hippel C, Rayner M, Spiess J (2009) Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice. Neuropsychopharmacology 34(6):1416–1426. doi:10.1038/npp.2008.178

    Article  CAS  PubMed  Google Scholar 

  • Tyagarajan SK, Ghosh H, Yevenes GE, Imanishi SY, Zeilhofer HU, Gerrits B, Fritschy JM (2013) Extracellular signal-regulated kinase and glycogen synthase kinase 3beta regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J Biol Chem 288(14):9634–9647. doi:10.1074/jbc.M112.442616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner B, Roloff B, Fechner K, Slominski A (2003) Intracellular calcium measurements of single human skin cells after stimulation with corticotropin-releasing factor and urocortin using confocal laser scanning microscopy. J Cell Sci 116(Pt 7):1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Wu LM, Han H, Wang QN, Hou HL, Tong H, Yan XB, Zhou JN (2007) Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology 32(12):2500–2510. doi:10.1038/sj.npp.1301386

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Maejima Y, Sedbazar U, Ando A, Kurita H, Damdindorj B, Takano E, Gantulga D, Iwasaki Y, Kurashina T, Onaka T, Dezaki K, Nakata M, Mori M, Yada T (2010) Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging 2(11):775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This project was provided by the Natural Science Foundation of China (81401122), the Natural Science Foundation of Anhui Province of China (1408085MH154), the Training Programme Foundation for the Talents by Anhui Education Commission (KJ2014RC004), and the foundation for Yong Key Teacher of Anhui Medical University (0601020103).

Author information

Authors and Affiliations

Authors

Contributions

Author’s Contribution

Associate Prof. Jin-Fang Ge and Prof. Fei-Hu Chen designed the study, and Prof. Jin-Fang Ge wrote the protocol and the first draft of the manuscript. Dr. Zheng Chen and Dr. Ya-Yun Xu managed the literature searches and the statistical analyses. Zheng Chen and Ya-Yun Xu performed the experiments. All authors contributed to and have approved the final manuscript.

Corresponding author

Correspondence to Jin-Fang Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xu, YY., Ge, JF. et al. CRHR1 Mediates the Up-Regulation of Synapsin I Induced by Nesfatin-1 Through ERK 1/2 Signaling in SH-SY5Y Cells. Cell Mol Neurobiol 38, 627–633 (2018). https://doi.org/10.1007/s10571-017-0509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0509-x

Keywords

Navigation