Skip to main content
Log in

O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 03 May 2017

This article has been updated

Abstract

Ischemic stroke is a dominant health problem with extremely high rates of mortality and disability. The main mechanism of neuronal injury after stroke is excitotoxicity, during which the activation of neuronal nitric oxide synthase (nNOS) exerts a vital role. However, directly blocking N-methyl-d-aspartate receptors or nNOS can lead to severe undesirable effects since they have crucial physiological functions in the central nervous system. Here, we report that nNOS undergoes O-linked-β-N-acetylglucosamine (O-GlcNAc) modification via interacting with O-GlcNAc transferase, and the O-GlcNAcylation of nNOS remarkably increases during glutamate-induced excitotoxicity. In addition, eliminating the O-GlcNAcylation of nNOS protects neurons from apoptosis during glutamate stimulation by decreasing the formation of nNOS–postsynaptic density protein 95 complexes. Taken together, our data suggest a novel function of the O-GlcNAcylation of nNOS in neuronal apoptosis during glutamate excitotoxicity, suggesting a novel therapy strategy for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 03 May 2017

    An erratum to this article has been published.

References

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Viholainen JI, Dart C, Warwick HK, Leyland ML, Courtney MJ (2005) The PSD95–nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 168:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakroborty S, Kim J, Schneider C, West AR, Stutzmann GE (2015) Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer’s disease mice. J Neurosci Off J Soc Neurosci 35:6893–6902

    Article  CAS  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    Article  CAS  PubMed  Google Scholar 

  • Comer FI, Hart GW (2000) O-glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275:29179–29182

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  • Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH, Group S (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke J Cereb Circ 40:2244–2250

    Article  Google Scholar 

  • Gambrill AC, Barria A (2011) NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci USA 108:5855–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, Poderoso JJ (2000) Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson’s disease. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 4:534–539

    Article  CAS  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP, Kamal R, Mishra SK, Singh MK, Shukla R, Singh MP (2016) Association of polymorphism of neuronal nitric oxide synthase gene with risk to Parkinson’s disease. Mol Neurobiol 53:3309–3314

    Article  CAS  PubMed  Google Scholar 

  • Han L, Zhang D, Tao T, Sun X, Liu X, Zhu G, Xu Z, Zhu L, Zhang Y, Liu W, Ke K, Shen A (2015) The role of N-glycan modification of TNFR1 in inflammatory microglia activation. Glycoconj J 32:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315

    Article  CAS  PubMed  Google Scholar 

  • Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai TW, Shyu WC, Wang YT (2011) Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med 17:266–275

    Article  CAS  PubMed  Google Scholar 

  • Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  • Li LL, Ginet V, Liu X, Vergun O, Tuittila M, Mathieu M, Bonny C, Puyal J, Truttmann AC, Courtney MJ (2013) The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J Neurosci Off J Soc Neurosci 33:8185–8201

    Article  CAS  Google Scholar 

  • Lim S, Haque MM, Nam G, Ryoo N, Rhim H, Kim YK (2015) Monitoring of intracellular tau aggregation regulated by OGA/OGT inhibitors. Int J Mol Sci 16:20212–20224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Paterson AJ, Zhang F, McAndrew J, Fukuchi K, Wyss JM, Peng L, Hu Y, Kudlow JE (2004) Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 89:1044–1055

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  CAS  Google Scholar 

  • Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J (2014) Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 115:92–115

    Article  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke J Cereb Circ 20:84–91

    Article  CAS  Google Scholar 

  • Luo CX, Zhu XJ, Zhou QG, Wang B, Wang W, Cai HH, Sun YJ, Hu M, Jiang J, Hua Y, Han X, Zhu DY (2007) Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression. J Neurochem 103:1872–1882

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Zhang D, Tao T, Liu X, Sun X, Wang Y, Shen A (2015) O-GlcNAc glycosylation of p27(kip1) promotes astrocyte migration and functional recovery after spinal cord contusion. Exp Cell Res 339:197–205

    Article  CAS  PubMed  Google Scholar 

  • Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:859–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamani U, Essop MF (2010) Hyperglycemia-mediated activation of the hexosamine biosynthetic pathway results in myocardial apoptosis. Am J Physiol Cell Physiol 299:C139–C147

    Article  CAS  PubMed  Google Scholar 

  • Rexach JE, Clark PM, Mason DE, Neve RL, Peters EC, Hsieh-Wilson LC (2012) Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat Chem Biol 8:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu IH, Lee KY, Do SI (2016) Abeta-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. Biochim Biophys Acta 1864:609–621

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gu JH, Dai CL, Gu J, Jin X, Sun J, Iqbal K, Liu F, Gong CX (2015) O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Sci Rep 5:14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40:885–893

    Article  CAS  PubMed  Google Scholar 

  • Soderholm M, Inghammar M, Hedblad B, Egesten A, Engstrom G (2016) Incidence of stroke and stroke subtypes in chronic obstructive pulmonary disease. Eur J Epidemiol 31:159–168

    Article  PubMed  Google Scholar 

  • Tallent MK, Varghis N, Skorobogatko Y, Hernandez-Cuebas L, Whelan K, Vocadlo DJ, Vosseller K (2009) In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem 284:174–181

    Article  CAS  PubMed  Google Scholar 

  • Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933

    Article  CAS  PubMed  Google Scholar 

  • Tojima T, Itofusa R, Kamiguchi H (2009) The nitric oxide-cGMP pathway controls the directional polarity of growth cone guidance via modulating cytosolic Ca2+ signals. J Neurosci Off J Soc Neurosci 29:7886–7897

    Article  CAS  Google Scholar 

  • Wang J, Chen R, Liu X, Shen J, Yan Y, Gao Y, Tao T, Shi J (2017) Hck promotes neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 37:251–261

    Article  CAS  PubMed  Google Scholar 

  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 8:1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Yang WH, Park SY, Nam HW, do Kim H, Kang JG, Kang ES, Kim YS, Lee HC, Kim KS, Cho JW (2008) NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA 105:17345–17350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    Article  CAS  PubMed  Google Scholar 

  • Zeidan Q, Hart GW (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 123:13–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ma L, Qi J, Shan H, Yu W, Gu Y (2015) MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy. Mol Cell Biochem 410:101–110

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang H, Liu H, Tao T, Wang N, Shen A (2016) NOS translocates into the nucleus and interacts with Sox2 to protect neurons against early excitotoxicity via promotion of Shh transcription. Mol Neurobiol 53:6444–6458

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Eacker SM, Hong SJ, Gronostajski RM, Dawson TM, Dawson VL (2010) NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. J Clin Investig 120:2446–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 20:223–230

    Article  CAS  Google Scholar 

  • Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X, Zhou QG, Zhu DY (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Tao T, Zhang D, Liu X, Ke K, Shen A (2015) NOS1AP O-GlcNAc modification involved in neuron apoptosis induced by excitotoxicity. Int J Mol Sci 16:16560–16575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 81401013, 81401365, 31270802, 81202368, 81371335), Nantong Science and Technology Project (MS12015056), and a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author’s Contribution

T. Tao predicted the O-GlcNAcylation site of nNOS and performed the mass spectrometry studies. P. Gong, Y. Yan, J. Shen, and C. Duan performed the experiments and the statistical analysis. J. Wang and R. Chen designed the experimental plans. Y. Gao and X. Liu wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Xiaojuan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Rongrong Chen, Peipei Gong, Jun Wang, and Xiaojuan Liu contributed equally to this work.

An erratum to this article is available at https://doi.org/10.1007/s10571-017-0495-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Neurological defect scores were assigned based on the Bederson’s scores andmeasured as follows: no deficits score, 0; unable to extend the contralateral forelimb score, 1; flexion of contralateral fore limb score, 2; mild circling to the contralateral side score, 3; severe circling and allying to the contralateral side score, 4. n = 3, p < 0.05 (TIF 39864 kb)

Supplementary Fig. 2

YinOYang 1.2 was used to predict the O-GlcNAc sites of nNOS (rat). The Gene ID of rat nNOS is 24598 (JPG 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Gong, P., Tao, T. et al. O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cell Mol Neurobiol 37, 1465–1475 (2017). https://doi.org/10.1007/s10571-017-0477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0477-1

Keywords

Navigation