Skip to main content
Log in

Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington’s Disease: Background and Evaluation in Cell Culture

Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In Huntington’s disease (HD) the imperfect expanded CAG repeat in the first exon of the HTT gene leads to the generation of a polyglutamine (polyQ) protein, which has some neuronal toxicity, potentially mollified by formation of aggregates. Accumulated research, reviewed here, implicates both the polyQ protein and the expanded repeat RNA in causing toxicity leading to neurodegeneration in HD. Different theories have emerged as to how the neurodegeneration spreads throughout the brain, with one possibility being the transport of toxic protein and RNA in extracellular vesicles (EVs). Most cell types in the brain release EVs and these have been shown to contain neurodegenerative proteins in the case of prion protein and amyloid-beta peptide. In this study, we used a model culture system with an overexpression of HTT-exon 1 polyQ-GFP constructs in human 293T cells and found that the EVs did incorporate both the polyQ-GFP protein and expanded repeat RNA. Striatal mouse neural cells were able to take up these EVs with a consequent increase in the green fluorescent protein (GFP) and polyQ-GFP RNAs, but with no evidence of uptake of polyQ-GFP protein or any apparent toxicity, at least over a relatively short period of exposure. A differentiated striatal cell line expressing endogenous levels of Hdh mRNA containing the expanded repeat incorporated more of this mRNA into EVs as compared to similar cells expressing this mRNA with a normal repeat length. These findings support the potential of EVs to deliver toxic expanded trinucleotide repeat RNAs from one cell to another, but further work will be needed to evaluate potential EV and cell-type specificity of transfer and effects of long-term exposure. It seems likely that expanded HD-associated repeat RNA may appear in biofluids and may have use as biomarkers of disease state and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CSF:

Cerebral spinal fluid

DMEM:

Dulbecco’s modified Eagle’s medium

EVs:

Extracellular vesicles

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

GFP:

Green fluorescent protein

HRP:

Horseradish peroxide

IBMX:

Isobutyl-1-methylxanthine

M.O.I.:

Multiplicity of infection

palm:

Palmitoylated

PEI:

Polyethylenimine

polyQ:

Polyglutamine

References

  • Agnati LF, Fuxe K (2014) Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 369(1652). doi:10.1098/rstb.2013.0505

  • Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790. doi:10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  • Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi:10.1042/BC2008002

    Article  CAS  PubMed  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431(7010):805–810

    Article  CAS  PubMed  Google Scholar 

  • Babcock DT, Ganetzky B (2015) Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci USA 112(39):E5427–5433. doi:10.1073/pnas.1516217112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaj L, Lessard R, Dai L, Cho Y-J, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180. doi:10.1038/ncomms1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Bañez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I, Guzmán M, Estivill X, Martí E (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8(2):e1002481. doi:10.1371/journal.pgen.1002481

    Article  PubMed  PubMed Central  Google Scholar 

  • Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LP (2015) RAN translation in Huntington disease. Neuron 88(4):667–677. doi:10.1016/j.neuron.2015.10.038

    Article  PubMed  Google Scholar 

  • Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP (2012) Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington’s disease knock-in mice. Brain Res Bull 88(2–3):171–181. doi:10.1016/j.brainresbull.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  • Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124. doi:10.3389/fphys.2012.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint-Pierre M, St-Amour I, Tolouei R, Skepper JN, Hauser RA, Mantovani D, Barker RA, Freeman TB (2014) Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 76(1):31–42. doi:10.1002/ana.24174

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372. doi:10.1016/j.tcb.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi:10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  • Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452(1):1–17. doi:10.1042/BJ20121898

    Article  CAS  PubMed  Google Scholar 

  • Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126(Pt 16):3678–3685. doi:10.1242/jcs.126086

    Article  CAS  PubMed  Google Scholar 

  • Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2. doi:10.3402/jev.v2i0.20677

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648

    Article  PubMed  Google Scholar 

  • Finkbeiner S (2012) Huntington’s disease. In: Morimoto RI, Kelly JW, Selkoe DJ (eds) Protein homeostasis: the chemistry and biology of diseases of protein conformation. The cold spring harbor perspectives in biology series. Cold Spring Harbor Press, New York, pp 211–234. doi:10.1101/cshperspect.a007476

  • Finkbeiner S, Mitra S (2008) The ubiquitin-proteasome pathway in Huntington’s disease. ScientificWorldJournal 8:421–433. doi:10.1100/tsw.2008.1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiszer A, Krzyzosiak WJ (2013) RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J Mol Med (Berl) 91(6):683–691. doi:10.1007/s00109-013-1016-2

    Article  CAS  Google Scholar 

  • Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF (2011) Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr 3:RRN1210. doi:10.1371/currents.RRN1210

  • Hoffner G, Djian P (2014) Polyglutamine aggregation in huntington disease: does structure determine toxicity? Mol Neurobiol 52(3):1297–1314

    Article  PubMed  Google Scholar 

  • Joshi P, Benussi L, Furlan R, Ghidoni R, Verderio C (2015) Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci 16(3):4800–4813. doi:10.3390/ijms16034800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-’t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450. doi:10.1371/journal.pbio.1001450

  • Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH, Chen JD, Nevins JR, Aronin N, DiFiglia M (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 277(9):7466–7476

    Article  CAS  PubMed  Google Scholar 

  • Keryer G, Pineda JR, Liot G, Kim J, Dietrich P, Benstaali C, Smith K, Cordelières FP, Spassky N, Ferrante RJ, Dragatsis I, Saudou F (2011) Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease. J Clin Invest 121(11):4372–4382. doi:10.1172/JCI57552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauss S, Griesche N, Jastrzebska E, Chen C, Rutschow D, Achmüller C, Dorn S, Boesch SM, Lalowski M, Wanker E, Schneider R, Schweiger S (2013) Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat Commun 4:1511. doi:10.1038/ncomms2514

    Article  PubMed  Google Scholar 

  • Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, Breakefield XO (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029. doi:10.1038/ncomms8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872

    Article  CAS  PubMed  Google Scholar 

  • Lööv C, Hyman BT, Breakefield XO, Ingelsson M (2015) Alpha-synuclein in extracellular vesicles—functional implications and diagnostic opportunities. Cell Mol Neurobiol (in press)

  • Nalavade R, Griesche N, Ryan DP, Hildebrand S, Krauss S (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 4:e752. doi:10.1038/cddis.2013.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S, Saudou F, Klionsky DJ, Finkbeiner S, Zeitlin SO, Marsh JL, Housman DE, Thompson LM, Steffan JS (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894. doi:10.11073/pnas.1420103111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce MM, Spartz EJ, Hong W, Luo L, Kopito RR (2015) Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun 6:6768. doi:10.1038/ncomms7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS, Botta P, Goldstein C, Bernhard M, Galimberti I, Müller M, Lüthi A, Arber S, Bouwmeester T, van der Putten H, Di Giorgio FP (2014) Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 17(8):1064–1072. doi:10.1038/nn.3761

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11(2):219–225. doi:10.1038/ncb1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rilla K, Siiskonen H, Tammi M, Tammi R (2014) Hyaluronan-coated extracellular vesicles–a novel link between hyaluronan and cancer. Adv Cancer Res 123:121–148. doi:10.1016/B1978-0-12-800092-2.00005-8

    Article  PubMed  Google Scholar 

  • Saman S, Lee NC, Inoyo I, Jin J, Li Z, Doyle T, McKee AC, Hall GF (2014) Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer’s disease. J Alzheimers Dis 40(S1):S47–70. doi:10.3233/JAD-132135

    PubMed  Google Scholar 

  • Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(3):33–47. doi:10.1007/s00441-00012-01428-00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8(5):1432–1446. doi:10.1016/j.celrep.2014.07.035

    Article  CAS  PubMed  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  • Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9(19):2799–2809

    Article  CAS  PubMed  Google Scholar 

  • Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378(6555):403–406

    Article  CAS  PubMed  Google Scholar 

  • Tsoi H, Chan HY (2014) Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta 1842(6):779–784. doi:10.1016/j.bbadis.2013.11.015

    Article  PubMed  Google Scholar 

  • Velier J, Kim M, Schwarz C, Kim TW, Sapp E, Chase K, Aronin N, DiFiglia M (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  CAS  PubMed  Google Scholar 

  • Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO (2015) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest (in press)

  • Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108(1):260–265. doi:10.1073/pnas.1013343108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Suzanne McDavitt for skilled editorial assistance. Drs. Marian DiFiglia, Ellen Sapp, and Neal Aronin for insightful comments on HD pathophysiology. This work was supported by the NIH Common Fund through the Office of Strategic Coordination/Office of the NIH Director, NCI U19 CA179563 (XOB), and NIH NRSA NIA postdoctoral training grant, 2T32AG000222 (JSR). Additional support was from NIH 3R01 NS039074 (SF). Lentiviral vectors were produced by the MGH Vector Core supported by NIN/NINDS P30 NS045775 (XOB and Dr. Bakhos Tannous).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xandra O. Breakefield.

Additional information

Xuan Zhang, Erik R. Abels, and Jasmina S. Redzic have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2016_350_MOESM1_ESM.tiff

RT-PCR of polyQ-GFP RNA with different repeat lengths from transduced 293T cells and EVs. 293T cells were transduced using lentiviral vectors encoding GFP (not shown), Httex1-25Q-GFP, and Httex1-97Q-GFP. Two weeks later (equivalent to about 6 passages) RNA from cells and EVs was extracted using the miRNeasy mini kit. RT-PCR products were analyzed on 1 % agarose gel using 1 kb Quick-Load ladder. [Open arrowhead—25Q-GFP; solid arrowhead—97Q-GFP; gray arrowhead—GFP RNAs.] (TIFF 11720 kb)

10571_2016_350_MOESM2_ESM.tiff

Bright field image showing striatal neuron-like STHdhQ7/Q7 and STHdhQ111/Q111 cells 12 h after differentiation. Immortalized mouse striatal cell lines, STHdhQ111/Q111 and STHdhQ7/Q7 were normally cultured in high glucose DMEM (Corning) plus 10 % FBS and 40 mg/ml of G418 at 33oC. After neuronal differentiation, which was induced by incubation with a dopamine cocktail of α-FGF (10 ng/ml), 3-IBMX (240 μM), forskolin (48.6 μM), and dopamine (5 μM) (Sigma) in DMEM/F12 for 12 h, cells develop long neuron-like processes with STHdhQ7/Q7 appearing to have larger soma than the STHdh Q111/Q111 cells. (TIFF 11720 kb)

10571_2016_350_MOESM3_ESM.tiff

HTT protein was detected in the STHdh111/111 cells but not in the EVs from these cells. Striatal cells were allowed to attach for 6 h before being differentiated. Cells and EVs in conditioned media were harvested from both striatal cell lines 48 h after differentiation. Western blots were performed for both striatal cells and EV lysates using monoclonal 3B5H10 antibody. The HTT protein (approx. 350 kDa) was found in STHdh111/111 cells, but was not detectable in STHdh7/7 cells, consistent with the low levels of HTT protein in the latter (Krauss et al. 2013). No HTT immunoreactive proteins were found in the EVs from these cell lines. Open circle = non-specific protein; solid circle = HTT protein. (TIFF 11720 kb)

Supplementary material 4 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Abels, E.R., Redzic, J.S. et al. Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington’s Disease: Background and Evaluation in Cell Culture. Cell Mol Neurobiol 36, 459–470 (2016). https://doi.org/10.1007/s10571-016-0350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0350-7

Keywords

Navigation