Skip to main content

Advertisement

Log in

Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine’s neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107(1):3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Huang CC (2006) Perinatal brain injury and regulation of transcription. Curr Opin Neurol 19(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Miao L, Yao Y, Wu W, Wu X, Gong C, Qiu L, Chen J (2015) Dexmedetomidine ameliorate CLP-induced rat intestinal injury via inhibition of inflammation. Mediat Inflamm 2015:918361. doi:10.1155/2015/918361

    Google Scholar 

  • Chrysostomou C, Schmitt CG (2008) Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol 4(5):619–627. doi:10.1517/17425255.4.5.619

    Article  CAS  PubMed  Google Scholar 

  • Dahmani S, Paris A, Jannier V, Hein L, Rouelle D, Scholz J, Gressens P, Mantz J (2008) Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology 108(3):457–466. doi:10.1097/ALN.0b013e318164ca81

    Article  CAS  PubMed  Google Scholar 

  • Degos V, Charpentier TL, Chhor V, Brissaud O, Lebon S, Schwendimann L, Bednareck N, Passemard S, Mantz J, Gressens P (2013) Neuroprotective effects of dexmedetomidine against glutamate agonist-induced neuronal cell death are related to increased astrocyte brain-derived neurotrophic factor expression. Anesthesiology 118(5):1123–1132. doi:10.1097/ALN.0b013e318286cf36

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18(3):387–400. doi:10.1111/j.1750-3639.2008.00138.x

    Article  CAS  PubMed  Google Scholar 

  • Drouin-Ouellet J, Cicchetti F (2012) Inflammation and neurodegeneration: the story ‘retolled’. Trends Pharmacol Sci 33(10):542–551. doi:10.1016/j.tips.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  • Du T, Li B, Liu S, Zang P, Prevot V, Hertz L, Peng L (2009) ERK phosphorylation in intact, adult brain by alpha(2)-adrenergic transactivation of EGF receptors. Neurochem Int 55(7):593–600. doi:10.1016/j.neuint.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  • Hewett SJ, Bell SC, Hewett JA (2006) Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 112(2):335–357

    Article  CAS  PubMed  Google Scholar 

  • Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S (2012) Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta 1822(4):537–545. doi:10.1016/j.bbadis.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  • Janke EL, Samra S (2006) Dexmedetomidine and neuroprotection. Semin Anesth Perioper Med Pain 25(2):71–76. doi:10.1053/j.sane.2006.02.002

    Article  CAS  Google Scholar 

  • Kim CH, Kim JH, Lee J, Ahn YS (2003) Zinc-induced NF-kappaB inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol Appl Pharmacol 190(2):189–196

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang Y, Yu C, Yao Y, Wu Y, Qian L, Cheung CW (2015) Dexmedetomidine analgesia effects in patients undergoing dental implant surgery and its impact on postoperative inflammatory and oxidative stress. Oxid Med Cell Longev 2015:186736. doi:10.1155/2015/186736

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao Z, Cao D, Han X, Liu C, Peng J, Zuo Z, Wang F, Li Y (2014) Both JNK and P38 MAPK pathways participate in the protection by dexmedetomidine against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats. Brain Res Bull 107:69–78. doi:10.1016/j.brainresbull.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Tang HY, Davis FB, Davis PJ (2011) Resveratrol and apoptosis. Ann N Y Acad Sci 1215:79–88. doi:10.1111/j.1749-6632.2010.05846.x

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP, Maze M (2004) Dexmedetomidine produces its neuroprotective effect via the alpha 2A-adrenoceptor subtype. Eur J Pharmacol 502(1–2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M (1993) Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 79(2):306–312

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107(3):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minghetti L (2007) Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem 42:127–141

    Article  PubMed  Google Scholar 

  • Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C (1999) The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19(11):1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J (2004) Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 35(4):987–991

    Article  PubMed  Google Scholar 

  • Pan WY, Hua XX, Wang YT, Guo RX, Chen JF, Mo LQ (in press) Dosage response of dexmedetomidine-induced resistance to hypoxia in mice. molecular medicine reports. In press

  • Paris A, Mantz J, Tonner PH, Hein L, Brede M, Gressens P (2006) The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the alpha2A-adrenoceptor subtype. Anesth Analg 102(2):456–461

    Article  CAS  PubMed  Google Scholar 

  • Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158(3):995–1006. doi:10.1016/j.neuroscience.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  • Rupalla K, Allegrini PR, Sauer D, Wiessner C (1998) Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 96(2):172–178

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5(5):554–559

    Article  CAS  PubMed  Google Scholar 

  • Shen N, Mo LQ, Hu F, Chen PX, Guo RX, Feng JQ (2014) A novel role of spinal astrocytic connexin 43: mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci Ther 20(8):728–736. doi:10.1111/cns.12244

    Article  CAS  PubMed  Google Scholar 

  • Sulemanji DS, Dönmez A, Aldemir D, Sezgin A, Türkoglu S (2007) Dexmedetomidine during coronary artery bypass grafting surgery: is it neuroprotective?–A preliminary study. Acta Anaesthesiol Scand 51(8):1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481:243–268

    Article  PubMed  Google Scholar 

  • Tosun Z, Baktir M, Kahraman HC, Baskol G, Guler G, Boyaci A (2013) Does dexmedetomidine provide cardioprotection in coronary artery bypass grafting with cardiopulmonary bypass? A pilot study. J Cardiothorac Vasc Anesth 27(4):710–715. doi:10.1053/j.jvca.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  • Virtanen R, Savola JM, Saano V (1989) Highly selective and specific antagonism of central and peripheral alpha 2-adrenoceptors by atipamezole. Arch Int Pharmacodyn Ther 297:190–204

    CAS  PubMed  Google Scholar 

  • Ye HH, Hua R, Yu L, Wu KJ, Fei SJ, Qin X, Song Y, Cao JL, Zhang YM (2013) Abnormal expression of Toll-like receptor 4 is associated with susceptibility to ethanol-induced gastric mucosal injury in mice. Dig Dis Sci 58(10):2826–2839. doi:10.1007/s10620-013-2727-5

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao X, Huang WQ, Liu KX (2012) Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology 116(5):1035–1046. doi:10.1097/ALN.0b013e3182503964

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yuan L, Liu D, Wang J, Wang S, Zhang Q, Gong Y, Liu H, Hao A, Wang Z (2014) Hydrogen sulfide attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation. Pharmacol Res 84:32–44. doi:10.1016/j.phrs.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY, Yu LN, Yan M (2013) Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res 1494:1–8. doi:10.1016/j.brainres.2012.11.047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grant 2012B031800289 from the science and technology plan projects of Guangdong Province (to Dr. L-Q Mo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiu Mo.

Ethics declarations

Conflict of Interest

There is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Lin, L., Zhang, N. et al. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways. Cell Mol Neurobiol 36, 1179–1188 (2016). https://doi.org/10.1007/s10571-015-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0315-2

Keywords

Navigation