Skip to main content
Log in

Serotonin Depletion Does not Modify the Short-Term Brain Hypometabolism and Hippocampal Neurodegeneration Induced by the Lithium–Pilocarpine Model of Status Epilepticus in Rats

  • Brief Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has been reported that fluoxetine, a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, has neuroprotective properties in the lithium–pilocarpine model of status epilepticus (SE) in rats. The aim of the present study was to investigate the effect of 5-HT depletion by short-term administration of p-chlorophenylalanine (PCPA), a specific tryptophan hydroxylase inhibitor, on the brain hypometabolism and neurodegeneration induced in the acute phase of this SE model. Our results show that 5-HT depletion did modify neither the brain basal metabolic activity nor the lithium–pilocarpine-induced hypometabolism when evaluated 3 days after the insult. In addition, hippocampal neurodegeneration and astrogliosis triggered by lithium–pilocarpine were not exacerbated by PCPA treatment. These findings point out that in the early latent phase of epileptogenesis, non-5-HT-mediated actions may contribute, at least in some extent, to the neuroprotective effects of fluoxetine in this model of SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bercovici E, Cortez MA, Wang X, Snead OC 3rd (2006) Serotonin depletion attenuates AY-9944-mediated atypical absence seizures. Epilepsia 47:240–246

    Article  CAS  PubMed  Google Scholar 

  • Freitas RM, Sousa FC, Viana GS, Fonteles MM (2006) Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett 408:79–83

    Article  CAS  PubMed  Google Scholar 

  • Goffin K, Van Paesschen W, Dupont P, Van Laere K (2009) Longitudinal microPET imaging of brain glucose metabolism in rat lithium–pilocarpine model of epilepsy. Exp Neurol 217:205–209

    Article  CAS  PubMed  Google Scholar 

  • Gulbins E, Palmada M, Reichel M, Lüth A, Böhmer C, Amato D, Müller CP, Tischbirek CH, Groemer TW, Tabatabai G, Becker KA, Tripal P, Staedtler S, Ackermann TF, van Brederode J, Alzheimer C, Weller M, Lang UE, Kleuser B, Grassmé H, Kornhuber J (2013) Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 19:934–938

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gao F, Wang S, Ding Y, Zhang H, Wang J, Ding MP (2009) In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an (18)F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience 162:972–979

    Article  CAS  PubMed  Google Scholar 

  • Hellmann-Regen J, Uhlemann R, Regen F, Heuser I, Otte C, Endres M, Gertz K, Kronenberg G (2015) Direct inhibition of retinoic acid catabolism by fluoxetine. J Neural Transm. doi:10.1007/s00702-015-1407-3

    PubMed  Google Scholar 

  • Hernandez EJ, Williams PA, Dudek FE (2002) Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia 43:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Jobe PC, Browning RA (2005) The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav 7:602–619

    Article  PubMed  Google Scholar 

  • Jupp B, O’Brien TJ (2007) Application of coregistration for imaging of animal models of epilepsy. Epilepsia 48(Suppl. 4):82–89

    Article  PubMed  Google Scholar 

  • Koe BK, Weissman A (1966) p-Chlorophenylalanine, a specific depletor of brain serotonin. J Pharmacol Exp Ther 154:499–516

    CAS  PubMed  Google Scholar 

  • Kornum BR, Licht CL, Weikop P, Knudsen GM, Aznar S (2006) Central serotonin depletion affects rat brain areas differently: a qualitative and quantitative comparison between different treatment schemes. Neurosci Lett 392:129–134

    Article  CAS  PubMed  Google Scholar 

  • Lee EM, Park GY, Im KC, Kim ST, Woo CW, Chung JH, Kim KS, Kim JS, Shon YM, Kim YI, Kang JK (2012) Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium–pilocarpine model of epilepsy. Epilepsia 53:860–969

    Article  CAS  PubMed  Google Scholar 

  • Lenkey N, Karoly R, Kiss JP, Szasz BK, Vizi ES, Mike A (2006) The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine. Mol Pharmacol 70:2052–2063

    Article  CAS  PubMed  Google Scholar 

  • Lévesque M, Salami P, Behr C, Avoli M (2013) Temporal lobe epileptiform activity following systemic administration of 4-aminopyridine in rats. Epilepsia 54:596–604

    Article  PubMed  Google Scholar 

  • Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Mello LE, Cavalheiro EA, Tan AM, Kupfe WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995

    Article  CAS  PubMed  Google Scholar 

  • Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(Supplement 1):S236–S240

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  • Racine R, Coscina DV (1979) Effects of midbrain raphe lesions or systemic p-chlorophenylalanine on the development of kindled seizures in rats. Brain Res Bull 4:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ramos AJ, Tagliaferro P, López EM, Pecci Saavedra J, Brusco A (2000) Neuroglial interactions in a model of para-chlorophenylalanine-induced serotonin depletion. Brain Res 883:1–14

    Article  CAS  PubMed  Google Scholar 

  • Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ (2013) Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS ONE 8:e78516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadat KS, O’shea E, Colado MI, Elliott JM, Green AR (2005) The role of 5-HT in the impairment of thermoregulation observed in rats administered MDMA (‘ecstasy’) when housed at high ambient temperature. Psychopharmacology 179:884–890

    Article  CAS  PubMed  Google Scholar 

  • Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035:24–31

    Article  CAS  PubMed  Google Scholar 

  • Shiha AA, de Cristóbal J, Delgado M, Fernández de la Rosa R, Bascuñana P, Pozo MA, García-García L (2015) Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium–pilocarpine model of epilepsy in rats. Brain Res Bull 111:36–47

    Article  CAS  PubMed  Google Scholar 

  • Tagashira E, Hiramori T, Nakao K, Urano T, Yanaura S (1983) Effects of central monoamine compounds on tranylcypromine-induced barbital-withdrawal convulsions. Life Sci 32:1599–1606

    Article  CAS  PubMed  Google Scholar 

  • Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    Article  CAS  PubMed  Google Scholar 

  • Vizi ES, Kisfali M, Lőrincz T (2013) Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 93:32–38

    Article  CAS  PubMed  Google Scholar 

  • Wang SJ, Su CF, Kuo YH (2003) Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48:170–177

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu YH, Huang YG, Chen LW (2008) Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Res 1241:157–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Spanish Ministerio de Ciencia e Innovación (SAF2009-09020) and Comunidad de Madrid (I2M2, S2010/BMD-2349). We are grateful to Dr. José Luis López-Lacomba, director of the Instituto de Estudios Biofuncionales UCM, and Dr. Enrique Martínez-Campos for kindly allowing us to use the fluorescence microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis García-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-García, L., Shiha, A.A., Bascuñana, P. et al. Serotonin Depletion Does not Modify the Short-Term Brain Hypometabolism and Hippocampal Neurodegeneration Induced by the Lithium–Pilocarpine Model of Status Epilepticus in Rats. Cell Mol Neurobiol 36, 513–519 (2016). https://doi.org/10.1007/s10571-015-0240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0240-4

Keywords

Navigation