Skip to main content

Advertisement

Log in

A Novel Monoclonal Antibody Against Neuroepithelial and Ependymal Cells and Characteristics of Its Positive Cells in Neurospheres

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There are still few useful cell membrane surface antigens suitable for identification and isolation of neural stem cells (NSCs). We generated a novel monoclonal antibody (mAb), designated as mAb against immature neural cell antigens (INCA mAb), which reacted with the areas around a lateral ventricle of a fetal cerebrum. INCA mAb specifically reacted with neuroepithelial cells in fetal cerebrums and ependymal cells in adult cerebrums. The recognition molecules were O-linked 40 and 42 kDa glycoproteins on the cell membrane surface (gp40 INCA and gp42 INCA). Based on expression pattern analysis of the recognition molecules in developing cerebrums, it was concluded that gp42 INCA was a stage-specific antigen expressed on undifferentiated neuroepithelial cells, while gp40 INCA was a cell lineage-specific antigen expressed at the stages of differentiation from neuroepithelial cells to ependymal cells. A flow cytometric analysis showed that fetal and young adult neurospheres were divided into INCA mAb CD133 polyclonal antibody (pAb), INCA mAb+ CD133 pAb, and INCA mAb+ CD133 pAb+ cell populations based on the reactivity against INCA mAb and CD133 pAb. The proportion of cells having the neurosphere formation capability in the INCA mAb+ CD133 pAb+ cell population was significantly larger than that of undivided neurospheres. Neurospheres formed by clonal expansion of INCA mAb+ CD133 pAb+ cells gave rise to neurons and glial cells. INCA mAb will be a useful immunological probe in the study of NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ab:

Antibody

BSA:

Bovine serum albumin

CNE:

Cortical neuroepithelium

CP:

Caudate putamen

ECL:

Ependymal cell layer

EGF:

Epidermal growth factor

FACS:

Fluorescence-activated cell sorting

b-FGF:

Basic-fibroblast growth factor

GFAP:

Glial fibrillary acidic protein

O-Glycosidase:

End-α-N-acetylgalactosaminidase

LIF:

Leukemia inhibitory factor

LMS:

Lateral migratory stream

LV:

Lateral ventricle (s)

mAb:

Monoclonal antibody

NSC:

Neural stem cell

pAb:

Polyclonal antibody

PBS:

Phosphate-buffered saline

PNGase F:

Peptide-N-glycosidase F

PVDF:

Polyvinylidene difluoride

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SeNE:

Septal neuroepithelium

StNE:

Striatal neuroepithelium

SVZ:

Subventricular zone

VZ:

Ventricular zone

VZ/SZV:

VZ plus SVZ

References

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  • Barraud P, Thompsonm L, Kirik D, Bjorklund A, Parmar M (2005) Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse. Eur J Neurosci 22:1555–1569

    Article  PubMed  Google Scholar 

  • Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875

    Article  PubMed  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    Article  PubMed  CAS  Google Scholar 

  • Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat. Neurosci 10:153–163

    CAS  Google Scholar 

  • Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, Salani S, Del Bo R, Ghezzi S, Strazzer S, Bresolin N, Comi PG (2007) Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol 205:547–562

    Article  PubMed  CAS  Google Scholar 

  • Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependymal of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Fisher J, Beckerervordersandforth R, Tripathi P, Steiner-Mezzadri A, Ninkovic J, Gotz M (2011) Prospective isolation of adult neural stem cells from the mouse subependymal zone. Nat Prot 6:1981–1989

    Article  Google Scholar 

  • Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Gelman DG, Martini FJ, Nobrega-Pereira S, Pierani A, Kessaris N, Marin O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29:9380–9389

    Article  PubMed  CAS  Google Scholar 

  • Gleason D, Fallon JH, Guerra M, Liu J-C, Bryant PJ (2008) Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience 156:81–88

    Article  PubMed  CAS  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida Y, Inoue M, Ito T, Kato H, Sakaguchi M, Sunabori T, Nakaya M, Nonaka S, Ogura T, Higuchi H, Okano H, Spassky N, Sawamoto K (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137:3037–3046

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525–528

    Article  PubMed  CAS  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of neural stem cells in the adult mammalian central nervous system. Cell 96:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Kasper M, Stosiek P, Goertchen R (1987) Comparative immunohistochemical and lectin histochemical studies of ependymal cells and the epithelium of the choroid plexus. Acta Histochem 82:199–209

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman SA, Okano H (2001) Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17:259–273

    Article  PubMed  CAS  Google Scholar 

  • Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10:93–101

    Article  PubMed  CAS  Google Scholar 

  • Kosodo Y, Roper K, Haubensak W, Marzesco A-M, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kotani M, Yamamura Y, Tamatani T, Kitamura F, Miyasaka M (1993) Generation and characterization of monoclonal antibodies against rabbit CD4, CD5 and CD11a antigens. J Immunol Methods 157:241–251

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Kessler JD, Read T-A, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  PubMed  CAS  Google Scholar 

  • Manthrope CM, Wilkin GP, Wilson JE (1977) Purification of viable ciliated cuboidal ependymal cells from rat brain. Brain Res 134:407–415

    Article  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  PubMed  CAS  Google Scholar 

  • Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JH, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    PubMed  CAS  Google Scholar 

  • Pastrana E, Cheng L-C, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 106:6387–6392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peh GS-L, Lang RJ, Pera MF, Hawes SM (2009) CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation. Stem cells Dev 18:269–282

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5732

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA (2011) Prospective isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59:68–81

    Article  PubMed  Google Scholar 

  • Privat A, Leblond CP (1972) The subependymal layer and neighboring regions in the brain of the young rat. J Comp Neurol 146:277–302

    Article  PubMed  CAS  Google Scholar 

  • Renthal R, Schneider BG, Miller MM, Luduena RF (1993) Beta IV is the major beta-tubulin isotype in bovine cilia. Cell Motil Cytoskeleton 25:19–29

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736–739

    Article  PubMed  CAS  Google Scholar 

  • Russo C, Callegaro L, Lanza E, Ferrone S (1983) Re.: Purification of IgG monoclonal antibody by caprylic acid precipitation. J Immunol Meth 65:269–271

    Article  CAS  Google Scholar 

  • Schambra U (2008) Prenatal Mouse Brain Atlas. Springer Ltd., New York

    Book  Google Scholar 

  • Smart IH (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi T, Npwakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neurogenesis. J Neurosci 16:6183–6196

    PubMed  CAS  Google Scholar 

  • Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon T (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • von Bohlen Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420

    Article  Google Scholar 

  • Weigmann A, Corbell D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17:43–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Ohu University research funding.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Kotani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotani, M., Sato, Y., Ueno, A. et al. A Novel Monoclonal Antibody Against Neuroepithelial and Ependymal Cells and Characteristics of Its Positive Cells in Neurospheres. Cell Mol Neurobiol 36, 11–26 (2016). https://doi.org/10.1007/s10571-015-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0216-4

Keywords

Navigation