Skip to main content

Advertisement

Log in

15d-Prostaglandin J2 Protects Cortical Neurons Against Oxygen–Glucose Deprivation/Reoxygenation Injury: Involvement of Inhibiting Autophagy Through Upregulation of Bcl-2

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have previously shown that PPAR-γ agonist 15d-PGJ2 inhibited neuronal autophagy after cerebral ischemia/reperfusion injury. However, the underlying mechanism of its regulatory role in neuronal autophagy remains unclear. This study was designed to test the hypothesis that 15d-PGJ2 upregulated Bcl-2 which binds to Beclin 1, and thereby inhibits autophagy. We performed cell viability assay, cytotoxicity assay, western blot, and co-immunoprecipitation to analyze autophagy activities in vitro model of oxygen–glucose deprivation/reoxygenation (OGD/R). OGD/R induced autophagy in cultured cortical neurons. 15d-PGJ2 treatment significantly decreased LC3-II/LC3-I ratio and Beclin 1 expression, but increased p62 expression. Autophagic inhibitor 3-methyladenine decreased LC3-II levels, increased neuronal cell viability, and mimicked some protective effect of 15d-PGJ2 against OGD/R injury. OGD/R-induced autophagy coincided with decreases in Bcl-2 expression and increases in Beclin 1 expression. 15d-PGJ2 treatment upregulated Bcl-2 expression and decreased Beclin 1 expression, and inhibit the dissociation of Beclin1 from Bcl-2 significantly. Bcl-2 siRNA abrogated the effect of 15d-PGJ2 on Beclin 1, LC3-II and p62, and influence cell viability and LDH level, while scRNA did not. PPAR-γ agonist 15d-PGJ2 exerts neuroprotection partially via inhibiting neuronal autophagy after OGD/R injury. The inhibition of autophagy by 15d-PGJ2 is mediated through upregulation of Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  CAS  PubMed  Google Scholar 

  • Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W (2012) Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS ONE 7:e35324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, Chen XX, Wang GF, Li KS (2013) Drug screening for autophagy inhibitors based on the dissociation of Beclin1–Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS ONE 8:e61026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Inestrosa NC, Bronfman M (2007) Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282:37006–37015

    Article  CAS  PubMed  Google Scholar 

  • Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175:1962–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamacmoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Fernandez S, Jerome WG, He Y, Yu X, Cai H, Boone B, Yi Y, Magnuson MA, Roy-Burman P, Matusik RJ, Shappell SB, Hayward SW (2010) Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ 17:469–481

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Abrams J (2008) p53: the Janus of autophagy? Nat Cell Biol 10:637–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Khatibi NH, Hu Q, Yan J, Chen C, Han J, Ma D, Chen Y, Zhou C (2012) Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp Neurol 234:181–190

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Shang J, Tian F, Nishi H, Abe K (2011) In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res 1397:66–75

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Fang YQ, Xue ZF, He YP, Fang RM, Li L (2012) Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur J Pharmacol 680:34–40

    Article  CAS  PubMed  Google Scholar 

  • Mahmood DF, Jguirim-Souissi I, Khadija el H, Blondeau N, Diderot V, Amrani S, Slimane MN, Syrovets T, Simmet T, Rouis M (2011) Peroxisome proliferator-activated receptor gamma induces apoptosis and inhibits autophagy of human monocyte-derived macrophages via induction of cathepsin L: potential role in atherosclerosis. J Biol Chem 286:28858–28866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Criollo A, Kroemer G (2010) Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 29:515–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  CAS  PubMed  Google Scholar 

  • Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 13:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo ZT, Fang YQ, He YP, Zhang S (2012) β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol Sin 33:737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlovski D, Thundyil J, Monk PN, Wetsel RA, Taylor SM, Woodruff TM (2012) Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. FASEB J 26:3680–3690

    Article  CAS  PubMed  Google Scholar 

  • Puyal J, Vaslin A, Mottier V, Clarke PG (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66:378–389

    Article  CAS  PubMed  Google Scholar 

  • Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132–141

    Article  CAS  PubMed  Google Scholar 

  • Rovito D, Giordano C, Vizza D, Plastina P, Barone I, Casaburi I, Lanzino M, De Amicis F, Sisci D, Mauro L, Aquila S, Catalano S, Bonofiglio D, Ando S (2013) Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARgamma activation in MCF-7 breast cancer cells. J Cell Physiol 228:1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, Zhu YJ, Wang Q, Wang K, Luo BY (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70:314–322

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY (2012) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77–87

    Article  CAS  PubMed  Google Scholar 

  • Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  • Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220:58–71

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhang HL (2011) Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 32:1089–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Gu JH, Qin ZH (2012) Neuronal autophagy in cerebral ischemia. Neurosci Bull 28:658–666

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Li J, Ni W, Shen YW, Zhang XP (2013) Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS ONE 8:e55080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG (2009) RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin 30:919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Han J, Xia W, Shi S, Liu J, Ying W (2012) NAD(+) administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci Lett 512:67–71

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang W, Liang B, Casimiro MC, Whitaker-Menezes D, Wang M, Lisanti MP, Lanza-Jacoby S, Pestell RG, Wang C (2009) PPARgamma activation induces autophagy in breast cancer cells. Int J Biochem Cell Biol 41:2334–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China 81000488 (F.X.), Fudan University Young Teacher Capability Enhancement Program 20520133268 (F.X.), and Nanjing Medical Science and Technology Development Program YKK11124 (H.D.Q.).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizheng Wang.

Additional information

Haidong Qing, Weiguo Tan, Feng Xu and Zizheng Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Tan, W., Zhang, Z. et al. 15d-Prostaglandin J2 Protects Cortical Neurons Against Oxygen–Glucose Deprivation/Reoxygenation Injury: Involvement of Inhibiting Autophagy Through Upregulation of Bcl-2. Cell Mol Neurobiol 35, 303–312 (2015). https://doi.org/10.1007/s10571-014-0125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0125-y

Keywords

Navigation