Skip to main content

Advertisement

Log in

3D Porous Chitosan Scaffolds Suit Survival and Neural Differentiation of Dental Pulp Stem Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A key aspect of cell replacement therapy in brain injury treatment is construction of a suitable biomaterial scaffold that can effectively carry and transport the therapeutic cells to the target area. In the present study, we created small 3D porous chitosan scaffolds through freeze-drying, and showed that these can support and enhance the differentiation of dental pulp stem cells (DPSCs) to nerve cells in vitro. The DPSCs were collected from the dental pulp of adult human third molars. At a swelling rate of ~84.33 ± 10.92 %, the scaffold displayed high porosity and interconnectivity of pores, as revealed by SEM. Cell counting kit-8 assay established the biocompatibility of the chitosan scaffold, supporting the growth and survival of DPSCs. The successful neural differentiation of DPSCs was assayed by RT-PCR, western blotting, and immunofluorescence. We found that the scaffold-attached DPSCs showed high expression of Nestin that decreased sharply following induction of differentiation. Exposure to the differentiation media also increased the expression of neural molecular markers Microtubule-associated protein 2, glial fibrillary acidic protein, and 2′,3′-cyclic nucleotide phosphodiesterase. This study demonstrates that the granular 3D chitosan scaffolds are non-cytotoxic, biocompatible, and provide a conducive and favorable micro-environment for attachment, survival, and neural differentiation of DPSCs. These scaffolds have enormous potential to facilitate future advances in treatment of brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA (2009) Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 27:2229–2237

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    CAS  PubMed  Google Scholar 

  • d’Aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R, Checchi V, Laino L, Tirino V, Papaccio G (2009) Human dental pulp stem cells: from biology to clinical applications. J Exp Zool B Mol Dev Evol 312B:408–415

    Article  PubMed  Google Scholar 

  • Dokmeci MR, Khademhosseini A (2011) Preface to special topic: microfluidics in cell biology and tissue engineering. Biomicrofluidics 5:22101

    Article  PubMed  Google Scholar 

  • Feng X, Xing J, Feng G, Sang A, Shen B, Xu Y, Jiang J, Liu S, Tan W, Gu Z, Li L (2013) Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/beta-catenin signaling. Cell Mol Neurobiol 33:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, Blumling J, Wang CF, Kohane DS, Langer R (2006) Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27:5259–5267

    Article  CAS  PubMed  Google Scholar 

  • Gaspar VM, Sousa F, Queiroz JA, Correia IJ (2011) Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications. Nanotechnology 22:015101

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh S, Suzuki M, Yamaguchi I, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003a) Development of a nerve scaffold using a tendon chitosan tube. Artif Organs 27:1079–1088

    Article  PubMed  Google Scholar 

  • Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003b) Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 993:111–123

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Khademhosseini A, Dehghani F (2011) Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 32:9719–9729

    Article  CAS  PubMed  Google Scholar 

  • Kas HS (1997) Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 14:689–711

    Article  CAS  PubMed  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant’Anna OA, Miglino MA, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med 6:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kim NR, Lee DH, Chung PH, Yang HC (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e94–e100

    Article  PubMed  Google Scholar 

  • Lee M, Wu BM, Dunn JC (2008) Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 87:1010–1016

    Article  PubMed  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Z, Zhang A, Wang T, Chen W (2009) Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli RA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718

    Article  PubMed  Google Scholar 

  • Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19:2388–2398

    Article  PubMed  Google Scholar 

  • Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, Silva JC, Borges JP, Pires E, Chaves P, Correia IJ (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17:817–824

    Article  PubMed  Google Scholar 

  • Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi W, Nie D, Jin G, Chen W, Xia L, Wu X, Su X, Xu X, Ni L, Zhang X, Chen J (2012) BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials 33:3119–3126

    Article  CAS  PubMed  Google Scholar 

  • Tamaki Y, Nakahara T, Ishikawa H, Sato S (2013) In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 101:121–132

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gu Z, Shen B, Xu G, Zhou T, Jiang J, Xing J, Liu S, Li M, Tan W, Feng G, Sang A, Li L (2013) Roles of Wnt/beta-catenin signaling in retinal neuron-like differentiation of bone marrow mesenchymal stem cells from nonobese diabetic mice. J Mol Neurosci 49:250–261

    Article  CAS  PubMed  Google Scholar 

  • Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Graduate Student Innovation of Science and Technology Projects in Jiangsu Province and in Nantong University (Grants No.YKC13084); the “Top Six Types of Talents” Financial Assistance of Jiangsu Province Grant (No. 7 and No. 10); National Natural Science Foundation of China (Grant No. 31171038), Jiangsu Natural Science Foundation (BK2011385); the Grant of Nantong University for Innovation Talent and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. We thank Department of Human Anatomy of Medical College in Nantong University for technical assistance and equipment support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifeng Gu or Xinhua Zhang.

Additional information

Xingmei Feng and Xiaohui Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Lu, X., Huang, D. et al. 3D Porous Chitosan Scaffolds Suit Survival and Neural Differentiation of Dental Pulp Stem Cells. Cell Mol Neurobiol 34, 859–870 (2014). https://doi.org/10.1007/s10571-014-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0063-8

Keywords

Navigation