Skip to main content
Log in

Morphine-Induced Apoptosis in the Ventral Tegmental Area and Hippocampus After the Development but not Extinction of Reward-Related Behaviors in Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aicher SA, Mitchell JL, Mendelowitz D (2002) Distribution of mu-opioid receptors in rat visceral premotor neurons. Neuroscience 115:851–860

    Article  CAS  PubMed  Google Scholar 

  • Alexander M, Daniel T, Chaudry IH (2005) Opiate analgesics contribute to the development of post injury immunosuppression. J Surg Res 129:161–168

    Article  CAS  PubMed  Google Scholar 

  • Atici S, Cinel L, Cinel I et al (2004) Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci 114:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Bajic D, Commons KG, Soriano SG (2013) Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci 31:258–266

    Article  CAS  PubMed  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A et al (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Billa SK, Sinha N, Rudrabhatla SR et al (2009) Extinction of morphine-dependent conditioned behavior is associated with increased phosphorylation of the GluR1 subunit of AMPA receptors at hippocampal synapses. Eur J Neurosci 29:55–64

    Article  PubMed Central  PubMed  Google Scholar 

  • Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA et al (2001) Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 134:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bryant L, Doyle T, Chen Z et al (2009) Spinal ceramide and neuronal apoptosis in morphine antinociceptive tolerance. Neurosci Lett 463:49–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chauveau F, Pierard C, Tronche C et al (2009) The hippocampus and prefrontal cortex are differentially involved in serial memory retrieval in non-stress and stress conditions. Neurobiol Learn Mem 91:447–455

    Article  PubMed  Google Scholar 

  • Chen Q, Cui J, Zhang Y et al (2008) Prolonged morphine application modulates Bax and Hsp70 levels in primary rat neurons. Neurosci Lett 441:311–314

    Article  CAS  PubMed  Google Scholar 

  • Ding YQ, Kaneko T, Nomura S et al (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367:375–402

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fuster MJ, Ramos-Miguel A, Miralles A et al (2008) Opioid receptor agonists enhance the phosphorylation state of Fas-associated death domain (FADD) protein in the rat brain: functional interactions with casein kinase Ialpha, Galpha(i) proteins, and ERK1/2 signaling. Neuropharmacology 55:886–899

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Haeri-Rohani A, Sahraie H et al (2002) Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol 449:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gralow I (2002) Cancer pain: an update of pharmacological approaches in pain therapy. Curr Opin Anaesthesiol 15:555–561

    Article  PubMed  Google Scholar 

  • Gupta K, Kshirsagar S, Chang L et al (2002) Morphine stimulates angiogenesis by activating proangiogenic and survivalpromoting signaling and promotes breast tumor growth. Cancer Res 62:4491–4498

    CAS  PubMed  Google Scholar 

  • Haghparast A, Taslimi Z, Ramin M et al (2011) Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus. Behav Brain Res 220:112–118

    Article  CAS  PubMed  Google Scholar 

  • Hochenbery D, Nuna EZG, Milliman C et al (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  Google Scholar 

  • Hsiao PN, Chang MC, Cheng WF et al (2009) Morphine induces apoptosis of human endothelial cells through nitric oxide and reactive oxygen species pathways. Toxicology 256:83–91

    Article  CAS  PubMed  Google Scholar 

  • Huppertz B, Frank HG, Kaufmann P (1999) The apoptosis cascade—morphological and immunohistochemical methods for its visualization. Anat Embryol 200:1–18

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Tanno K, Kamo A et al (1993) Enhancement of tumor growth by morphine and its possible mechanism in mice. Biol Pharm Bull 16:762–766

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Cheong Y, So HS et al (2001) Protective effects of morphine in peroxynitrite-induced apoptosis of primary rat neonatal astrocytes: potential involvement of G protein and phosphatidylinositol 3-kinase (PI3 kinase). Biochem Pharmacol 61:779–786

    Article  CAS  PubMed  Google Scholar 

  • Kinloch RA, Treherne JM, Furness LM et al (1999) The pharmacology of apoptosis. Trends Pharmacol Sci 20:35–42

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward path-ways. Trends Pharmacol Sci 13:177–184

    Article  CAS  PubMed  Google Scholar 

  • Le Merrer J, Becker JA, Befort K et al (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412

    Article  PubMed  Google Scholar 

  • Liu LW, Lu J, Wang XH et al (2013) Neuronal apoptosis in morphine addiction and its molecular mechanism. Int J Clin Exp Med 6:540–545

    PubMed Central  PubMed  Google Scholar 

  • Mao J, Sung B, Ji RR et al (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22:7650–7661

    CAS  PubMed  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  CAS  PubMed  Google Scholar 

  • Meriney SD, Gray DP (2001) Morphine induced delay of normal cell death in the avian ciliary ganglion. Science 228:1451–1453

    Article  Google Scholar 

  • Moaddab M, Haghparast A, Hassanpour-Ezatti M (2009) Effects of reversible inactivation of the ventral tegmental area on the acquisition and expression of morphine-induced conditioned place preference in the rat. Behav Brain Res 198:466–471

    Article  CAS  PubMed  Google Scholar 

  • Moon TD (1988) The effect of opiates upon prostatic carcinoma cell growth. Biochem Biophys Res Commun 153:722–727

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MT, Rego AC, Morgadinho MT et al (2002) Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci 965:487–496

    Article  CAS  PubMed  Google Scholar 

  • Olmstead MC, Franklin KB (1997a) The development of a conditioned place preference to morphine: effects of lesions of various CNS sites. Behav Neurosci 111:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Olmstead MC, Franklin KB (1997b) The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci 111:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Phillips AG, LePiane FG (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol Biochem Behav 12:965–968

    Article  CAS  PubMed  Google Scholar 

  • Rezayof A, Nazari-Serenjeh F, Zarrindast MR et al (2007) Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area. Eur J Pharmacol 562:92–102

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Sahraei H, Amiri YA, Haeri-Rohani A et al (2005) Different effects of GABAergic receptors located in the ventral tegmental area on the expression of morphine-induced conditioned place preference in rat. Eur J Pharmacol 524:95–101

    Article  CAS  PubMed  Google Scholar 

  • Samandari R, Chizari A, Hassanpour R et al (2013) Streptozotocin-induced diabetes affects the development and maintenance of morphine reward in rats. Neurosci Lett 543:90–94

    Article  CAS  PubMed  Google Scholar 

  • Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Rev 33:199–227

    Article  CAS  PubMed  Google Scholar 

  • Simon EJ (1991) Opioid receptors and endogenous opioid peptides. Med Res Rev 11:357–374

    Article  CAS  PubMed  Google Scholar 

  • Singhal PC, Reddy K, Franki N et al (1997) Morphine induces splenocyte apoptosis and enhanced mRNA expression of cathepsin-B. Inflammation 21:609–617

    Article  CAS  PubMed  Google Scholar 

  • Singhal PC, Kapasi AA, Reddy K et al (1999) Morphine promotes apoptosis in Jurkat cells. J Leukoc Biol 66:650–658

    CAS  PubMed  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB et al (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SC, Stobbs SH, Colago EE et al (2006) Contingent and non-contingent effects of heroin on mu-opioid receptor-containing ventral tegmental area GABA neurons. Exp Neurol 202:139–151

    Article  CAS  PubMed  Google Scholar 

  • Taslimi Z, Haghparast A, Hassanpour-Ezatti M et al (2011) Chemical stimulation of the lateral hypothalamus induces conditioned place preference in rats: involvement of OX1 and CB1 receptors in the ventral tegmental area. Behav Brain Res 217:41–46

    Article  CAS  PubMed  Google Scholar 

  • Zhou LF, Zhu YP (2006) Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats. J Zhejiang Univ Sci B 7:107–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Maryam Moslehi and Mr. Mahmoudreza Ramin for their comments and editing our manuscript. This study was supported by the grant (No. 90-821-A) from Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Haghparast.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razavi, Y., Alamdary, S.Z., Katebi, SN. et al. Morphine-Induced Apoptosis in the Ventral Tegmental Area and Hippocampus After the Development but not Extinction of Reward-Related Behaviors in Rats. Cell Mol Neurobiol 34, 235–245 (2014). https://doi.org/10.1007/s10571-013-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-0007-8

Keywords

Navigation