Skip to main content

Advertisement

Log in

N-Acetylcysteine Protects Against Hypoxia Mimetic-Induced Autophagy by Targeting the HIF-1α Pathway in Retinal Ganglion Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia-induced retinal ganglion cell (RGC) death has been proposed to be the critical event in the pathophysiology of glaucoma. Therefore, delaying or halting RGC degeneration, known as neuroprotection, is a novel and promising approach with potential clinical applications for treating glaucoma. In this study, we investigate hypoxia-induced cell death of RGCs and the underlying mechanisms of N-acetylcysteine (NAC) as a neuroprotectant. To establish a model for chemical hypoxia-induced cell death, RGC-5 cells were treated with the hypoxia mimetic cobalt chloride (CoCl2). Following CoCl2 exposure, significant levels of apoptotic and autophagic cell death were observed in RGC-5 cells, evidenced by lysosome dysfunction and autophagosome formation. Pretreating RGC-5 cells with NAC significantly counteracted the autophagic cell death. NAC-mediated neuroprotection was attributed to the direct scavenging of reactive oxygen species and was mediated by targeting the hypoxia-inducible factor-1α pathway via the BNIP3 and PI3K/Akt/mTOR pathways. These results provide insights into the degeneration of RGCs and present a potential clinical application for NAC as a neuroprotectant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agar A, Li S, Agarwal N, Coroneo MT, Hill MA (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200

    Article  PubMed  CAS  Google Scholar 

  • Althaus J, Bernaudin M, Petit E, Toutain J, Touzani O, Rami A (2006) Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein following focal cerebral ischemia in rats. Neurochem Int 48:687–695

    Article  PubMed  CAS  Google Scholar 

  • Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83:473–483

    Article  PubMed  CAS  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2007) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204

    PubMed  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581

    Article  PubMed  CAS  Google Scholar 

  • Castagne V, Clarke PG (1996) Axotomy-induced retinal ganglion cell death in development: its time-course and its diminution by antioxidants. Proc Biol Sci 263:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Chen YN, Yamada H, Mao W, Matsuyama S, Aihara M, Araie M (2007) Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists. Brain Res 1148:28–37

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann-Noor AH, Vijay S, Limb GA, Khaw PT (2010) Strategies for optic nerve rescue and regeneration in glaucoma and other optic neuropathies. Drug Discov Today. 15(7–8):287–299

    Article  PubMed  CAS  Google Scholar 

  • Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M (2002) Advances glycation endproducts induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 33:236–247

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B (1999) N-acetylcyteine but not methionine or 2-oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonic rat brain. Neurosci Lett 259:79–82

    Article  PubMed  CAS  Google Scholar 

  • Ergorul C, Ray A, Huang W, Wang DY, Ben Y, Cantuti-Castelvetri I, Grosskreutz CL (2010) Hypoxia inducible factor-1α (HIF-1α) and some HIF-1 target genes are elevated in experimental glaucoma. J Mol Neurosci 42(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Feke GT, Pasquale LR (2008) Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 115(2):246–252

    Article  PubMed  Google Scholar 

  • Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–4145

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Roh KH, Jeong YJ, Kim SH, Lee EJ, Kim MS, Oh WM, Oh HK, Kim WJ (2008) Estradiol protects PC12 cells against CoCl2-induced apoptosis. Brain Res Bull 76:579–585

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, Singh I, Singh AK (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res. 15;76(4):519-27

    Google Scholar 

  • Krishnamoorthy RR, Agarwal P, Prasanna G, Vopat K, Lambert W, Sheedlo HJ, Pang IH, Shade D, Wordinger RJ, Yorio T, Clark AF, Agarwal N (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86:1–12

    Article  PubMed  CAS  Google Scholar 

  • Maher P, Hanneken A (2005) The molecular basis of oxidative stress induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Vis Sci 46:749–757

    Article  PubMed  Google Scholar 

  • Mazure NM, Pouyssegur J (2010) Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22(2):177–180

    Article  PubMed  CAS  Google Scholar 

  • McMahon LP, Yue W, Santen RJ, Lawrence JC Jr (2005) Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol Endocrinol 19:175–183

    Article  PubMed  CAS  Google Scholar 

  • Mowat FM, Luhmann UF, Smith AJ, Lange C, Duran Y, Harten S, Shukla D, Maxwell PH, Ali RR, Bainbridge JW (2010) HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia. PLoS ONE 5:e11103

    Article  PubMed  Google Scholar 

  • Ozdemir G, Tolun FI, Gul M, Imrek S (2009) Retinal oxidative stress induced by intraocular hypertension in rats may be ameliorated by brimonidine treatment and N-acetyl cysteine supplementation. J Glaucoma 18(9):662–665

    Article  PubMed  Google Scholar 

  • Qu J, Wang D, Grosskreutz CL (2010) Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 91(1):48–53

    Article  PubMed  CAS  Google Scholar 

  • Ritch R (2007) Natural compounds: evidence for a protective role in eye disease. Can J Ophthalmol 42:425–438

    Article  PubMed  Google Scholar 

  • Rodríguez-Martín E, Casarejos MJ, Canals S, de Bernardo S, Mena MA (2002) Thiolic antioxidants protect from nitric oxide-induced toxicity in fetal midbrain cultures. Neuropharmacology 43(5):877–888

    Article  PubMed  Google Scholar 

  • Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    Article  PubMed  CAS  Google Scholar 

  • Tezel G, Yang X, Cai J (2005) Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 46(9):3177–3187

    Article  PubMed  Google Scholar 

  • Tulsawani R, Kelly LS, Fatma N, Chhunchha B, Kubo E, Kumar A, Singh DP (2010) Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neurosci 11:125

    Article  PubMed  Google Scholar 

  • Vengellur A, LaPres JJ (2004) The role of hypoxia inducible factor 1α in cobalt chloride induced cell death in mouse embryonic fibroblasts. Toxicol Sci 82:638–646

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C (2007) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61(3):263–271

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Li X, Xie W, Jankovic J, Le W, Pan T (2010) Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int 57(3):198–205

    Article  PubMed  CAS  Google Scholar 

  • Yang WW, Shu B, Zhu Y, Yang HT (2008) E2F6 inhibits cobalt chloride-mimetic hypoxia-induced apoptosis through E2F1. Mol Biol Cell 19:3691–3700

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008a) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Chai FY, Yan H, Guo Y, Harding JJ (2008b) Effects of NAC and glutathione ethyl ester drops on strepotzotocin-induced diabetic cataract in rats. Mol Vision 14:862–870

    CAS  Google Scholar 

  • Zhu X, Zhou W, Cui Y, Zhu L, Li J, Xia Z, Shao B, Wang H, Chen H (2009) Muscarinic activation attenuates abnormal processing of beta-amyloid precursor protein induced by cobalt chloride-mimetic hypoxia in retinal ganglion cells. Biochem Biophys Res Commun 384(1):110–113

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zhou W, Cui Y, Zhu L, Li J, Feng X, Shao B, Qi H, Zheng J, Wang H, Chen H (2010) Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells: involvement of muscarinic receptors and HIF-1 alpha pathway. Cell Mol Neurobiol 30:427–435

    Article  PubMed  CAS  Google Scholar 

  • Zou W, Yan M, Xu W, Huo H, Sun L, Zheng Z, Liu X (2001) Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J Neurosci Res 64(6):646–653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Basic Research Program (2010CB529800), the National Natural Science Foundation of China (No. 30472012, 30700280 and 30701018), the Shanghai Municipal Science and Technology Commission (No. 11ZR1419300), the Shanghai Municipal Education Commission (No. 12YZ037), and the Shanghai Leading Academic Discipline Project (No. S30205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhou or Xianqun Fan.

Additional information

Lan Yang and Panpan Tan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Tan, P., Zhou, W. et al. N-Acetylcysteine Protects Against Hypoxia Mimetic-Induced Autophagy by Targeting the HIF-1α Pathway in Retinal Ganglion Cells. Cell Mol Neurobiol 32, 1275–1285 (2012). https://doi.org/10.1007/s10571-012-9852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9852-0

Keywords

Navigation