Skip to main content

Advertisement

Log in

Relative Expression of Type II MAGE Genes During Retinoic Acid-Induced Neural Differentiation of Mouse Embryonic Carcinoma P19 Cells: A Comparative Real-Time PCR Analysis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In mammals, the type II melanoma antigen (MAGE) protein family is constituted by at least ten closely related members, but our understanding of their function in the developing nervous system remains poor. To systematically study the expression pattern of type II MAGE genes during neurogenesis, we employed mouse embryonic carcinoma P19 cells as an in vitro model for neural differentiation by retinoic acid (RA) induction. The expression of type II MAGE genes was investigated under distinct steps of differentiation by a comparative ΔΔC T paradigm of real-time quantitative reverse-transcription PCR (qRT-PCR). The relative levels of each gene expression at various steps of differentiation were expressed as a fold change compared with that in RA-untreated P19 cells. The results revealed that: (1) the expression of MAGE-E1, E2, and Necdin transcripts was steadily increased, and the relative levels of MAGE-D1, D2, D3, F1, G1, and H1 mRNA were fluctuantly elevated after the RA-treatment at embryoid body and neural stages; (2) during RA-treatment and subsequent differentiation, the expression of MAGE-L2 mRNA was decreased. Therefore, our results suggested that MAGE-D1, D2, D3, E1, E2, F1, G1, H1, and Necdin might be involved in the early process of neurogenesis, and MAGE-L2 connected with maintenance of pluripotency of stem cells. These studies may present some clues for a better understanding of the fundamental aspects of type II MAGE genes during neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MAGE:

Melanoma antigen

RA:

Retinoic acid

qRT-PCR:

Quantitative reverse-transcription PCR

MHD:

MAGE homology domain

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GAP43:

Growth-associated protein 43

C T :

Threshold cycle

EBs:

Embryonic bodies

h:

Hour

d:

Day

RT:

Room temperature

References

  • Aizawa T, Maruyama K, Kondo H, Yoshikawa K (1992) Expression of necdin, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. Brain Res Dev Brain Res 68:265–274

    Article  PubMed  CAS  Google Scholar 

  • Alam AH, Suzuki H, Tsukahara T (2009) Expression analysis of Fgf8a &Fgf8b in early stage of P19 cells during neural differentiation. Cell Biol Int 33:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Bain G, Ray WJ, Yao M, Gottlieb DI (1994) From embryonal carcinoma cells to neurons: the P19 pathway. BioEssays 16:343–348

    Article  PubMed  CAS  Google Scholar 

  • Barker PA, Salehi A (2002) The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res 67:705–712

    Article  PubMed  CAS  Google Scholar 

  • Barrett GL, Bartlett PF (1994) The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA 91:6501–6505

    Article  PubMed  CAS  Google Scholar 

  • Barrett GL, Greferath U, Barker PA, Trieu J, Bennie A (2005) Co-expression of the P75 neurotrophin receptor and neurotrophin receptor-interacting melanoma antigen homolog in the mature rat brain. Neuroscience 133:381–392

    Article  PubMed  CAS  Google Scholar 

  • Chibuk TK, Bischof JM, Wevrick R (2001) A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. BMC Genet 2:22

    Article  PubMed  CAS  Google Scholar 

  • Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S (2001) An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61:5544–5551

    PubMed  CAS  Google Scholar 

  • Clotman F, De Backer O, De Plaen E, Boon T, Picard J (2000) Cell- and stage-specific expression of mage genes during mouse spermatogenesis. Mamm Genome 11:696–699

    Article  PubMed  CAS  Google Scholar 

  • Dussault AA, Pouliot M (2006) Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced Online 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Frade JM, Rodriguez-Tebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kawano Y, Katakura H, Takenaka K, Adachi M, Sasaki M, Shimizu K, Ikenaka K, Wada H, Tanaka F (2006) Expression of MAGE-D4, a novel MAGE family antigen, is correlated with tumor-cell proliferation of non-small cell lung cancer. Lung Cancer 51:79–88

    Article  PubMed  Google Scholar 

  • Jordan BW, Dinev D, LeMellay V, Troppmair J, Gotz R, Wixler L, Sendtner M, Ludwig S, Rapp UR (2001) Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J Biol Chem 276:39985–39989

    Article  PubMed  CAS  Google Scholar 

  • Kawano Y, Sasaki M, Nakahira K, Yoshimine T, Shimizu K, Wada H, Ikenaka K (2001) Structural characterization and chromosomal localization of the MAGE-E1 gene. Gene 277:129–137

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima T, Taniura H, Nishimura I, Yoshikawa K (2004) Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J Biol Chem 279:40484–40493

    Article  PubMed  CAS  Google Scholar 

  • Kuwako K, Taniura H, Yoshikawa K (2004) Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 279:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R (2000) Expression and imprinting of MAGEL2 suggest a role in Prader–Willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet 9:1813–1819

    Article  PubMed  CAS  Google Scholar 

  • Malinen E, Kassinen A, Rinttila T, Palva A (2003) Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149:269–277

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Usami M, Aizawa T, Yoshikawa K (1991) A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun 178:291–296

    Article  PubMed  CAS  Google Scholar 

  • Masse J, Piquet-Pellorce C, Viet J, Guerrier D, Pellerin I, Deschamps S (2011) ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate. Exp Cell Res 317:1922–1934

    Article  PubMed  CAS  Google Scholar 

  • McBurney MW, Jones-Villeneuve EM, Edwards MK, Anderson PJ (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167

    Article  PubMed  CAS  Google Scholar 

  • Niinobe M, Koyama K, Yoshikawa K (2000) Cellular and subcellular localization of necdin in fetal and adult mouse brain. Dev Neurosci 22:310–319

    Article  PubMed  CAS  Google Scholar 

  • Osterlund C, Tohonen V, Forslund KO, Nordqvist K (2000) Mage-b4, a novel melanoma antigen (MAGE) gene specifically expressed during germ cell differentiation. Cancer Res 60:1054–1061

    PubMed  CAS  Google Scholar 

  • Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA, Mellors JW, Coffin JM (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41:4531–4536

    Article  PubMed  CAS  Google Scholar 

  • Saburi S, Nadano D, Akama TO, Hirama K, Yamanouchi K, Naito K, Tojo H, Tachi C, Fukuda MN (2001) The trophinin gene encodes a novel group of MAGE proteins, magphinins, and regulates cell proliferation during gametogenesis in the mouse. J Biol Chem 276:49378–49389

    Article  PubMed  CAS  Google Scholar 

  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27:279–288

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Nakahira K, Kawano Y, Katakura H, Yoshimine T, Shimizu K, Kim SU, Ikenaka K (2001) MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res 61:4809–4814

    PubMed  CAS  Google Scholar 

  • Sasaki A, Masuda Y, Iwai K, Ikeda K, Watanabe K (2002) A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/necdin family protein, Dlxin-1. J Biol Chem 277:22541–22546

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Hinck L, Watanabe K (2005) RumMAGE-D the members: structure and function of a new adaptor family of MAGE-D proteins. J Recept Signal Transduct Res 25:181–198

    Article  PubMed  CAS  Google Scholar 

  • Stone B, Schummer M, Paley PJ, Crawford M, Ford M, Urban N, Nelson BH (2001) MAGE-F1, a novel ubiquitously expressed member of the MAGE superfamily. Gene 267:173–182

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N, Taniura H, Niinobe M, Takayama C, Tominaga-Yoshino K, Ogura A, Yoshikawa K (2000) The postmitotic growth suppressor necdin interacts with a calcium-binding protein (NEFA) in neuronal cytoplasm. J Biol Chem 275:31674–31681

    Article  PubMed  CAS  Google Scholar 

  • Taniura H, Yoshikawa K (2002) Necdin interacts with the ribonucleoprotein hnRNP U in the nuclear matrix. J Cell Biochem 84:545–555

    Article  PubMed  Google Scholar 

  • Taniura H, Taniguchi N, Hara M, Yoshikawa K (1998) Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 273:720–728

    Article  PubMed  CAS  Google Scholar 

  • Tcherpakov M, Bronfman FC, Conticello SG, Vaskovsky A, Levy Z, Niinobe M, Yoshikawa K, Arenas E, Fainzilber M (2002) The p75 neurotrophin receptor interacts with multiple MAGE proteins. J Biol Chem 277:49101–49104

    Article  PubMed  CAS  Google Scholar 

  • Uetsuki T, Takagi K, Sugiura H, Yoshikawa K (1996) Structure and expression of the mouse necdin gene. Identification of a postmitotic neuron-restrictive core promoter. J Biol Chem 271:918–924

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Brown MJ (1999) mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. Anal Biochem 269:198–201

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Bauer JH, Li Y, Shao Z, Zetoune FS, Cattaneo E, Vincenz C (2001) Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J Biol Chem 276:33812–33820

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Strickland P, Watanabe K, Hinck L (2003) UNC5H1 induces apoptosis via its juxtamembrane region through an interaction with NRAGE. J Biol Chem 278:17483–17490

    Article  PubMed  CAS  Google Scholar 

  • Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Chinese National Basic Research Program (Grant No. 2009CB918301), and Beijing Municipal Natural Science Foundation (Grant No. 5112027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yang, S., Yang, J. et al. Relative Expression of Type II MAGE Genes During Retinoic Acid-Induced Neural Differentiation of Mouse Embryonic Carcinoma P19 Cells: A Comparative Real-Time PCR Analysis. Cell Mol Neurobiol 32, 1059–1068 (2012). https://doi.org/10.1007/s10571-012-9826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9826-2

Keywords

Navigation