Skip to main content
Log in

EGCG Ameliorates the Suppression of Long-Term Potentiation Induced by Ischemia at the Schaffer Collateral-CA1 Synapse in the Rat

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The function of Epigallocatechin gallate (EGCG), a main component of green tea, has been widely investigated, amelioration of synaptic transmission and neuroprotective effects against ischemia-induced brain damage among others. However, the mechanism underlying is still unveiled. We investigated the effects of EGCG on high frequency stimulation-induced long-term potentiation (LTP) in the Schaffer collateral-CA1 synapse with or without cerebral ischemia injury induced by middle cerebral artery occlusion (MCAO) in vivo to examine the possible relations between EGCG and synaptic transmission. Application of EGCG modulated synaptic transmission and produced a dose-dependent improvement of the induction of LTP. However, relative high-dose EGCG can block the induction of LTP at the Schaffer collateral-CA1 synapse in normal rat in vivo. In addition, the effects of EGCG were observed on the infarct volume and neurological deficit in rats subjected to MCAO; furthermore, the cell viability of primary cultured rat hippocampal and cortical neurons suffered from oxygen–glucose deprivation were evaluated with MTT and LDH assay, which showed significant neuroprotective properties in vitro. Surprisingly, the contents of the glutamate (Glu), glycine (Gly), and gamma-aminobutyric acid amino acids were totally disequilibrated before and after cerebral ischemia injury and could be rebalanced to original level by application of EGCG. Our results suggest that EGCG is able to improve the efficiency of synaptic transmission in cerebral ischemia injury with attenuated effect related to the neuroprotection of EGCG through regulating excitatory and inhibitory amino acid balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bae JH, Mun KC, Park WK, Lee SR, Suh SI, Baek WK, Yim MB, Kwon TK, Song DK (2002) EGCG attenuates AMPA-induced intracellular calcium increase in hippocampal neurons. Biochem Biophys Res Commun 290:1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, He W, Zhou X, Lv Q, Xu X, Yang S, Zhao C, Guo L (2011) Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol 664:20–28

    Article  PubMed  CAS  Google Scholar 

  • Di Filippo M, Tozzi A, Costa C, Belcastro V, Tantucci M, Picconi B, Calabresi P (2008) Plasticity and repair in the post-ischemic brain. Neuropharmacology 55:353–362

    Article  PubMed  Google Scholar 

  • Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20:1627–1642

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck JM, Dutka AJ (1990) Background review and current concepts of reperfusion injury. Arch Neurol 47:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • He Z, Huang L, Wu Y, Wang J, Wang H, Guo L (2008) DDPH: improving cognitive deficits beyond its alpha 1-adrenoceptor antagonism in chronic cerebral hypoperfused rats. Eur J Pharmacol 588:178–188

    Article  PubMed  CAS  Google Scholar 

  • He Z, Lu Q, Xu X, Huang L, Chen J, Guo L (2009) DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release. Eur J Pharmacol 603:50–55

    Article  PubMed  CAS  Google Scholar 

  • He W, Cheng Z, Fu G, Xu X, Lu Q, Guo L (2010) ZD7288-induced suppression of long-term potentiation was attenuated by exogenous NMDA at the Schaffer collateral-CA1 synapse in the rat in vivo. Eur J Pharmacol 631:10–16

    Article  PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Li Q, Li H, He Z, Cheng Z, Chen J, Guo L (2009a) Inhibition of intracellular Ca2+ release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons. Eur J Pharmacol 602:238–244

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Li Q, Li H, Guo L (2009b) Neuroprotective and antioxidative effect of cactus polysaccharides in vivo and in vitro. Cell Mol Neurobiol 29:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Jung YD, Ellis LM (2001) Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol 82:309–316

    Article  PubMed  CAS  Google Scholar 

  • Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM (2001) EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844–850

    Article  PubMed  CAS  Google Scholar 

  • Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT (2010) Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 5:e11951

    Article  PubMed  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Song DK, Jung CH, Shin DH, Park J, Kwon TK, Jang BC, Mun KC, Kim SP, Suh SI, Bae JH (2004) (−)-Epigallocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular Ca modulation in PC12 cells. Clin Exp Pharmacol Physiol 31:530–536

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Huang XJ, He W, Ding J, Jia JT, Fu G, Wang HX, Guo LJ (2009) Neuroprotective potential of fasudil mesylate in brain ischemia-reperfusion injury of rats. Cell Mol Neurobiol 29:169–180

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Singel DJ, Stamler JS (1994) Nitric oxide in the central nervous system. Prog Brain Res 103:359–364

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Kuang P, Wu W, Zhang F, Wan F, Huang Y, Ding A (1998) Radix Salviae miltiorrhizae protects rat hippocampal neuron in culture from anoxic damage. J Tradit Chin Med 18:49–54

    PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Lyubkin M, Durand DM, Haxhiu MA (1997) Interaction between tetanus long-term potentiation and hypoxia-induced potentiation in the rat hippocampus. J Neurophysiol 78:2475–2482

    PubMed  CAS  Google Scholar 

  • Macleod MR, Davis SM, Mitchell PJ, Gerraty RP, Fitt G, Hankey GJ, Stewart-Wynne EG, Rosen D, McNeil JJ, Bladin CF, Chambers BR, Herkes GK, Young D, Donnan GA (2005) Results of a multicentre, randomised controlled trial of intra-arterial urokinase in the treatment of acute posterior circulation ischaemic stroke. Cerebrovasc Dis 20:12–17

    Article  PubMed  CAS  Google Scholar 

  • Mittmann T, Qu M, Zilles K, Luhmann HJ (1998) Long-term cellular dysfunction after focal cerebral ischemia: in vitro analyses. Neuroscience 85:15–27

    Article  PubMed  CAS  Google Scholar 

  • Mondaca M, Hernandez A, Perez H, Valladares L, Sierralta W, Fernandez V, Soto-Moyano R (2004) Alpha2-adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex. Brain Res 1021:292–296

    Article  PubMed  CAS  Google Scholar 

  • Patil CS, Singh VP, Kulkarni SK (2006) Modulatory effect of sildenafil in diabetes and electroconvulsive shock-induced cognitive dysfunction in rats. Pharmacol Rep 58:373–380

    PubMed  CAS  Google Scholar 

  • Qu M, Mittmann T, Luhmann HJ, Schleicher A, Zilles K (1998) Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain. Neuroscience 85:29–43

    Article  PubMed  CAS  Google Scholar 

  • Schwartz-Bloom RD, Sah R (2001) gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  PubMed  CAS  Google Scholar 

  • Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Shiraishi K, Morton MT, Sharp FR (1990) Methionine sulfoximine reduces cortical infarct size in rats after middle cerebral artery occlusion. Stroke 21:322–327

    Article  PubMed  CAS  Google Scholar 

  • Thanvi B, Treadwell S, Robinson T (2008) Early neurological deterioration in acute ischaemic stroke: predictors, mechanisms and management. Postgrad Med J 84:412–417

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mei Y, Feng D, Xu L (2006) (−)-Epigallocatechin-3-gallate protects mice from concanavalin A-induced hepatitis through suppressing immune-mediated liver injury. Clin Exp Immunol 145:485–492

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Ramakrishna N, Wieraszko A, Hwang YW (2008) Promotion of neuronal plasticity by (−)-epigallocatechin-3-gallate. Neurochem Res 33:776–783

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Suzuki Y, Matsui T, Yoshimaru T, Yamaki M, Suzuki-Karasaki M, Hayakawa S, Shimizu K (2000) Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway. Biochem Biophys Res Commun 274:603–608

    Article  PubMed  CAS  Google Scholar 

  • Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Wang M, Ruan DY (2008) Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 249:45–54

    Article  PubMed  CAS  Google Scholar 

  • Yu HN, Yin JJ, Shen SR (2004) Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu2+. J Agric Food Chem 52:462–466

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Rusciano D, Osborne NN (2008) Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res 1198:141–152

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Shoji S, Lau P (2005) Balanced GABAergic and glutamatergic synapse development in hippocampal neurons. Biochem Biophys Res Commun 330:1110–1115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Foundation of Nature and Science of China (No. 81173038) and by the Foundation of Central Authorities of an Institution of Higher Learning of Scientific Research Special Fund (No. 2011TS073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Jun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Fu, G., Zhao, Y. et al. EGCG Ameliorates the Suppression of Long-Term Potentiation Induced by Ischemia at the Schaffer Collateral-CA1 Synapse in the Rat. Cell Mol Neurobiol 32, 267–277 (2012). https://doi.org/10.1007/s10571-011-9758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9758-2

Keywords

Navigation