Skip to main content

Advertisement

Log in

Protective Effects of YC-1 Against Glutamate Induced PC12 Cell Apoptosis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate, one of the major neurotransmitters in the central nervous system, is released into the synaptic spaces and bound to the glutamate receptors which facilitate normal synaptic transmission, synaptic plasticity, and brain development. Past studies have shown that glutamate with high concentration is a potent neurotoxin capable of destroying neurons through many signal pathways. In this research, our main purpose was to determine whether the specific soluble guanylyl cyclase activator YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole) had effect on glutamate-induced apoptosis in cultured PC12 cells. The differentiated PC12 cells impaired by glutamate were used as the cell model of excitability, and were exposed to YC-1 or/and ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) with gradient concentrations for 24 h. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl) assay was used to detect the cellular viability. Radioimmunoassay (RIA) was used to detect the cGMP (cyclic guanosine monophosphate) concentrations in PC12 cells. Hoechst 33258 staining and flow cytometric analysis were used to detect the cell apoptosis. The cellular viability was decreased and the apoptotic rate was increased when PC12 cells were treated with glutamate. Cells treated with YC-1 or/and ODQ showed no significant differences in the cell viability and intracellular cGMP levels compared with those of control group. The specific soluble guanylyl cyclase (sGC) inhibitor ODQ showed an inhibitory effect on cGMP level and aggravated the apoptosis of PC12 cells induced by glutamate. YC-1 elevated cGMP level thus decreased PC12 cell apoptosis induced by glutamate, but this effect could be reversed by ODQ. These results revealed that YC-1 might attenuate glutamate-induced PC12 cell apoptosis via a sGC–cGMP involved pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ankarcrona M, Dypbukt JM, Orrenius S, Nicotera P (1996) Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett 394:321–324

    Article  PubMed  CAS  Google Scholar 

  • Bleich S, Romer K, Wiltfang J, Kornhuber J (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 18:S33–S40

    Article  PubMed  Google Scholar 

  • Bredt DS (2003) Nitric oxide signaling in brain: potentiating the gain with YC-1. Mol Pharmacol 63:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Cary SPL, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. P Natl Acad Sci USA 102:13064–13069

    Article  CAS  Google Scholar 

  • Cary SPL, Winger JA, Derbyshire ER, Marletta MA (2006) Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 31:231–239

    Article  PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21:1679–1688

    Article  PubMed  Google Scholar 

  • Chien WL, Liang KC, Fu WM (2008) Enhancement of active shuttle avoidance response by the NO-cGMP-PKG activator YC-1. Eur J Pharmacol 590:233–240

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182

    Article  PubMed  CAS  Google Scholar 

  • Chun YS, Yeo EJ, Choi E, Teng CM, Bae JM, Kim MS, Park JW (2001) Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem Pharmacol 61:947–954

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 1003:12–21

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16:2479–2487

    PubMed  CAS  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire ER, Marletta MA (2009) Biochemistry of soluble guanylate cyclase. Handb Exp Pharmacol:17-31

  • Estevez AG, Spear N, Thompson JA, Cornwell TL, Radi R, Barbeito L, Beckman JS (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J Neurosci 18:3708–3714

    PubMed  CAS  Google Scholar 

  • Farinelli SE, Park DS, Greene LA (1996) Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci 16:2325–2334

    PubMed  CAS  Google Scholar 

  • Fiscus RR (1988) Molecular mechanisms of endothelium-mediated vasodilation. Semin Thromb Hemost 14 Suppl:12–22

    Google Scholar 

  • Fiscus RR, Robles BT, Waldman SA, Murad F (1987) Atrial natriuretic factors stimulate accumulation and efflux of cyclic GMP in C6-2B rat glioma and PC12 rat pheochromocytoma cell cultures. J Neurochem 48:522–528

    Article  PubMed  CAS  Google Scholar 

  • Fiscus RR, Tu AW, Chew SB (2001) Natriuretic peptides inhibit apoptosis and prolong the survival of serum-deprived PC12 cells. Neuroreport 12:185–189

    Article  PubMed  CAS  Google Scholar 

  • Flamigni F, Facchini A, Stanic I, Tantini B, Bonavita F, Stefanelli C (2001) Control of survival of proliferating L1210 cells by soluble guanylate cyclase and p44/42 mitogen-activated protein kinase modulators. Biochem Pharmacol 62:319–328

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J 15:6863–6868

    PubMed  CAS  Google Scholar 

  • Froissard P, Duval D (1994) Cytotoxic effects of glutamic acid on PC12 cells. Neurochem Int 24:485–493

    Article  PubMed  CAS  Google Scholar 

  • Funasaka T, Yanagawa T, Hogan V, Raz A (2005) Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J 19:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Garthwaite J (1988) Cyclic GMP and cell death in rat cerebellar slices. Neuroscience 26:321–326

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Goodwin DA, Neale S, Riddall D, Garthwaite J (2002) Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition. Mol Pharmacol 61:97–104

    Article  PubMed  CAS  Google Scholar 

  • Gerstner B, Lee J, DeSilva TM, Jensen FE, Volpe JJ, Rosenberg PA (2009) 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 87:2078–2086

    Article  PubMed  CAS  Google Scholar 

  • Greene LA (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol 78:747–755

    Article  PubMed  CAS  Google Scholar 

  • Hoenicka M, Becker EM, Apeler H, Sirichoke T, Schroder H, Gerzer R, Stasch JP (1999) Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. J Mol Med 77:14–23

    Article  PubMed  CAS  Google Scholar 

  • Hsieh GC, O’Neill AB, Moreland RB, Sullivan JP, Brioni JD (2003) YC-1 potentiates the nitric oxide/cyclic GMP pathway in corpus cavernosum and facilitates penile erection in rats. Eur J Pharmacol 458:183–189

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim M, Derbyshire ER, Soldatova AV, Marletta MA, Spiro TG (2010) Soluble Guanylate Cyclase Is Activated Differently by Excess NO and by YC-1: Resonance Raman Spectroscopic Evidence. Biochemistry-Us 49:4864–4871

    Article  CAS  Google Scholar 

  • Ishima T, Nishimura T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuropsychopharmacol Biol Psychiatry 32:1656–1659

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Chung HT, Kim SS, Han JA, Yoo YM, Kim KM, Lee GH, Yun HY, Green A, Li J, Simmons RL, Billiar TR (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci 19:6740–6747

    PubMed  CAS  Google Scholar 

  • Kuribayashi K, Kitaoka Y, Kumai T, Munemasa Y, Isenoumi K, Motoki M, Kogo J, Hayashi Y, Kobayashi S, Ueno S (2006) Neuroprotective effect of atrial natriuretic peptide against NMDA-induced neurotoxicity in the rat retina. Brain Res 1071:34–41

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  • Miller LN, Nakane M, Hsieh GC, Chang R, Kolasa T, Moreland RB, Brioni JD (2003) A-350619: a novel activator of soluble guanylyl cyclase. Life Sci 72:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Mulsch A, Bauersachs J, Schafer A, Stasch JP, Kast R, Busse R (1997) Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol 120:681–689

    Article  PubMed  CAS  Google Scholar 

  • Ndountse LT, Chan HM (2009) Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicol Lett 184:50–55

    Article  PubMed  CAS  Google Scholar 

  • Pan SL, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM (2004) YC-1 prevents sodium nitroprusside-mediated apoptosis in vascular smooth muscle cells. Cardiovasc Res 61:152–158

    Article  PubMed  CAS  Google Scholar 

  • Pan SL, Guh JH, Peng CY, Wang SW, Chang YL, Cheng FC, Chang JH, Kuo SC, Lee FY, Teng CM (2005) YC-1[3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models. J Pharmacol Exp Ther 314:35–42

    Article  PubMed  CAS  Google Scholar 

  • Parathath SR, Gravanis I, Tsirka SE (2007) Nitric oxide synthase isoforms undertake unique roles during excitotoxicity. Stroke 38:1938–1945

    Article  PubMed  CAS  Google Scholar 

  • Rukenstein A, Rydel RE, Greene LA (1991) Multiple agents rescue PC12 cells from serum-free cell death by translation- and transcription-independent mechanisms. J Neurosci 11:2552–2563

    PubMed  CAS  Google Scholar 

  • Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:277–308

    Google Scholar 

  • Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215

    Article  PubMed  CAS  Google Scholar 

  • Thippeswamy T, Morris R (1997) Cyclic guanosine 3′,5′-monophosphate-mediated neuroprotection by nitric oxide in dissociated cultures of rat dorsal root ganglion neurones. Brain Res 774:116–122

    Article  PubMed  CAS  Google Scholar 

  • Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, Akaike A, Shimohama S (2001) N-methyl-d-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res 63:377–387

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte PM (1997) Endothelial dysfunction and atherosclerosis. Eur Heart J 18 (Suppl E):E19–29

  • Wu CC, Ko FN, Kuo SC, Lee FY, Teng CM (1995) YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br J Pharmacol 116:1973–1978

    PubMed  CAS  Google Scholar 

  • Wu CH, Chang WC, Chang GY, Kuo SC, Teng CM (2004) The inhibitory mechanism of YC-1, a benzyl indazole, on smooth muscle cell proliferation: an in vitro and in vivo study. J Pharmacol Sci 94:252–260

    Article  PubMed  CAS  Google Scholar 

  • Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95:516–525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by 100 projects of Nankai university for undergraduates, Tianjin research program of application foundation and advanced technology (10JCZDJC19100) and the national natural science foundation of China (31000509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Wang, Y., Luo, J. et al. Protective Effects of YC-1 Against Glutamate Induced PC12 Cell Apoptosis. Cell Mol Neurobiol 31, 303–311 (2011). https://doi.org/10.1007/s10571-010-9622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9622-9

Keywords

Navigation