Skip to main content
Log in

Inositol 1,4,5-Trisphosphate Receptor in Chromaffin Secretory Granules and Its Relation to Chromogranins

  • Report
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

A Commentary to this article was published on 19 November 2010

Abstract

The inositol 1,4,5-trisphosphate (IP3)-mediated intracellular Ca2+ releases in secretory cells play vital roles in controlling not only the intracellular Ca2+ concentrations but also the Ca2+-dependent exocytotic processes. Of intracellular organelles that release Ca2+ in response to IP3, secretory granules stand out as the most prominent organelle and are responsible for the majority of IP3-dependent Ca2+ releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP3-mediated Ca2+ release as well as the presence of the IP3 receptor (IP3R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP3R isoforms, and 58–69% of total cellular IP3R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2–4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca2+ binding proteins, binding 30–93 mol of Ca2+/mol of protein with dissociation constants of 1.5–4.0 mM. Due to this high Ca2+ storage properties of chromogranins secretory granules contain ~40 mM Ca2+. Furthermore, chromogranins A and B directly interact with the IP3Rs and modulate the IP3R/Ca2+ channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP3R/Ca2+ channels to a more ordered, release-ready state, whereby making the IP3R/Ca2+ channels significantly more sensitive to IP3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279:20242–20249

    Article  CAS  PubMed  Google Scholar 

  • Blondel O, Moody MM, Depaoli AM, Sharp AH, Ross CA, Swift H, Bell GI (1994) Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc Natl Acad Sci USA 91:7777–7781

    Article  CAS  PubMed  Google Scholar 

  • Bulenda D, Gratzl M (1985) Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry 24:7760–7765

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD (1991) Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta 1071:174–202

    CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Montesinos MS, Criado M, Borges R (2006) Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J Neurochem 96:324–334

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  CAS  PubMed  Google Scholar 

  • Choe CU, Harrison KD, Grant W, Ehrlich BE (2004) Functional coupling of chromogranin with the inositol 1,4,5-trisphosphate receptor shapes calcium signaling. J Biol Chem 279:35551–35556

    Article  CAS  PubMed  Google Scholar 

  • Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84:473–480

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV (2006) NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 119:226–238

    Article  CAS  PubMed  Google Scholar 

  • Giordano T, Brigatti C, Podini P, Bonifacio E, Meldolesi J, Malosio ML (2008) Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation. Diabetologia 51:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Haigh JR, Parris R, Phillips JH (1989) Free concentrations of sodium, potassium and calcium in chromaffin granules. Biochem J 259:485–491

    CAS  PubMed  Google Scholar 

  • Haynes CL, Buhler LA, Wightman RM (2006) Vesicular Ca(2+)-induced secretion promoted by intracellular pH-gradient disruption. Biophys Chem 123:20–24

    Article  CAS  PubMed  Google Scholar 

  • Heidrich FM, Zhang K, Estrada M, Huang Y, Giordano FJ, Ehrlich BE (2008) Chromogranin B regulates calcium signaling, nuclear factor {kappa}B activity, and brain natriuretic peptide production in cardiomyocytes. Circ Res 102:1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Helle KB (2000) The chromogranins. Historical perspectives. Adv Exp Med Biol 482:3–20

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Yoo SH (2003) Presence of the inositol 1,4,5-triphosphate receptor isoforms in the nucleoplasm. FEBS Lett 555:411–418

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Bahk SJ, Ghee JY, Yoo SH (2005a) Subcellular distribution of chromogranins A and B in bovine adrenal chromaffin cells. FEBS Lett 579:5145–5151

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Jeon SH, Yoo JA, Park SY, Yoo SH (2005b) Effects of chromogranin expression on inositol 1,4,5-trisphosphate-induced intracellular Ca2+ mobilization. Biochemistry 44:6122–6132

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Yoo JA, Bahk SJ, Yoo SH (2005c) Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells. FEBS Lett 579:2597–2603

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Huh SK, Chu SY, Kweon HS, Yoo SH (2006) Presence of a putative vesicular inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca2+ store. Biochemistry 45:1362–1373

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Kim KD, Yoo SH (2007) Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels. Biochemistry 46:14032–14043

    Article  CAS  PubMed  Google Scholar 

  • Hur YS, Kim KD, Paek SH, Yoo SH (2010) Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 5:e11973

    Article  PubMed  Google Scholar 

  • Hutton JC (1989) The insulin secretory granule. Diabetologia 32:271–281

    Article  CAS  PubMed  Google Scholar 

  • Jacob SN, Choe CU, Uhlen P, DeGray B, Yeckel MF, Ehrlich BE (2005) Signaling microdomains regulate inositol 1,4,5-trisphosphate-mediated intracellular calcium transients in cultured neurons. J Neurosci 25:2853–2864

    Article  CAS  PubMed  Google Scholar 

  • Johenning FW, Zochowski M, Conway SJ, Holmes AB, Koulen P, Ehrlich BE (2002) Distinct intracellular calcium transients in neurites and somata integrate neuronal signals. J Neurosci 22:5344–5353

    CAS  PubMed  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51

    Article  CAS  PubMed  Google Scholar 

  • Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol 192:309–324

    Article  CAS  Google Scholar 

  • Mundorf ML, Hochstetler SE, Wightman RM (1999) Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73:2397–2405

    Article  CAS  PubMed  Google Scholar 

  • Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM (2000) Vesicular Ca2+ participates in the catalysis of exocytosis. J Biol Chem 275:9136–9142

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Chin WC, Verdugo P (1998) Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395:908–912

    Article  CAS  PubMed  Google Scholar 

  • Nicolay NH, Hertle D, Boehmerle W, Heidrich FM, Yeckel M, Ehrlich BE (2007) Inositol 1,4,5 trisphosphate receptor and chromogranin B are concentrated in different regions of the hippocampus. J Neurosci Res 85:2026–2036

    Article  CAS  PubMed  Google Scholar 

  • Nordmann JJ (1984) Combined stereological and biochemical analysis of storage and release of catecholamines in the adrenal medulla of the rat. J Neurochem 42:434–437

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299

    Article  CAS  PubMed  Google Scholar 

  • Plattner H, Artalejo AR, Neher E (1997) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol 139:1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Quesada I, Chin WC, Steed J, Campos-Bedolla P, Verdugo P (2001) Mouse mast cell secretory granules can function as intracellular ionic oscillators. Biophys J 80:2133–2139

    Article  CAS  PubMed  Google Scholar 

  • Quesada I, Chin WC, Verdugo P (2003) ATP-independent luminal oscillations and release of Ca2+ and H+ from mast cell secretory granules: implications for signal transduction. Biophys J 85:963–970

    Article  PubMed  Google Scholar 

  • Ravazzola M, Halban PA, Orci L (1996) Inositol 1,4,5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited. Proc Natl Acad Sci USA 93:2745–2748

    Article  CAS  PubMed  Google Scholar 

  • Santodomingo J, Vay L, Camacho M, Hernandez-SanMiguel E, Fonteriz RI, Lobaton CD, Montero M, Moreno A, Alvarez J (2008) Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 28:1265–1274

    Article  PubMed  Google Scholar 

  • Simon JP, Aunis D (1989) Biochemistry of the chromogranin A protein family. Biochem J 262:1–13

    CAS  PubMed  Google Scholar 

  • Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H, Miller G, Pichel J, Westphal H, Mears D, Rojas E, Pollard HB (1999) Defects in inositol 1,4,5-trisphosphate receptor expression, Ca2+ signaling, and insulin secretion in the anx7(±) knockout mouse. Proc Natl Acad Sci USA 96:13783–13788

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin–secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  • Thrower EC, Park HY, So SH, Yoo SH, Ehrlich BE (2002) Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J Biol Chem 277:15801–15806

    Article  CAS  PubMed  Google Scholar 

  • Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH (2003) A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278:49699–49706

    Article  CAS  PubMed  Google Scholar 

  • Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Zhang M, Zhou W, Wu Z, Ding J, Chen L, Xu T (2006) Extracellular ATP stimulates exocytosis via localized Ca release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH (1994) pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 269:12001–12006

    CAS  PubMed  Google Scholar 

  • Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1990) Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. J Biol Chem 265:13446–13448

    CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745

    CAS  PubMed  Google Scholar 

  • Yoo SH, Jeon CJ (2000) Inositol 1,4,5-trisphosphate receptor/Ca2+ channel modulatory role of chromogranin A, a Ca2+ storage protein of secretory granules. J Biol Chem 275:15067–15073

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, So SH, Kweon HS, Lee JS, Kang MK, Jeon CJ (2000) Coupling of the inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem 275:12553–12559

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Oh YS, Kang MK, Huh YH, So SH, Park HS, Park HY (2001) Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca2+ channel in the secretory granules and coupling with the Ca2+ storage proteins chromogranins A and B. J Biol Chem 276:45806–45812

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, You SH, Kang MK, Huh YH, Lee CS, Shim CS (2002) Localization of the secretory granule marker protein chromogranin B in the nucleus. Potential role in transcription control. J Biol Chem 277:16011–16021

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Nam SW, Huh SK, Park SY, Huh YH (2005) Presence of a nucleoplasmic complex composed of the inositol 1,4,5-trisphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids. Biochemistry 44:9246–9254

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Chu SY, Kim KD, Huh YH (2007) Presence of secretogranin II and high-capacity, low-affinity Ca2+ storage role in nucleoplasmic Ca2+ store vesicles. Biochemistry 46:14663–14671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The present work was supported in part by the CRI Program and BK21 Program (YSH) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hyun Yoo.

Additional information

A commentry to this article can be found at doi:10.1007/s10571-010-9552-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S.H., Huh, Y.H. & Hur, Y.S. Inositol 1,4,5-Trisphosphate Receptor in Chromaffin Secretory Granules and Its Relation to Chromogranins. Cell Mol Neurobiol 30, 1155–1161 (2010). https://doi.org/10.1007/s10571-010-9564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9564-2

Keywords

Navigation