Skip to main content

Advertisement

Log in

Maintenance of Critical Properties of Brain Tumor Stem-like Cells After Cryopreservation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It would be very useful to be able to classify brain tumor stem cells (BTSCs) by certain criteria to afford the design of specific or individualized treatment. Here, we studied two BTSC lines with differing biological and molecular features and whose respective features were well preserved after cryopreservation as single cells in SFM or 90% serum with 10% DMSO, a method not previously reported. The resuscitated BTSCs shared properties indistinguishable from their respective parental cells, including tumor sphere forming potentials, growth and differentiation properties, and tumorigenesis in vivo. The two cell lines also had differing molecule profiles, which can be well preserved after cryopreservation, similar to that of their respective primary tumors. Therefore, BTSCs from different patients, that have their own properties, were well retained by the present cryopreservation method, which might be a useful and reliable method for preserving BTSCs for long-term studies, such as classification and specific therapy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

BTSCs:

Brain tumor stem cells

CSCs:

Cancer stem cells

DMSO:

Dimethyl sulfoxide

EGF:

Epidermal growth factor

NSCs:

Neural stem cells

SFM:

Serum-free medium containing EGF, bFGF and B27 supplement

SFM-CryoP-TS:

Tumor spheres formed by cells cryopreserved in SFM and 10% DMSO

S-CryoP-TS:

Tumor spheres formed by cells cryopreserved in 90% serum and 10% DMSO

TSs:

Tumor spheres

References

  • Alcantara LS, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56

    Article  Google Scholar 

  • Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60:3683–3688

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  • Cheng JX, Liu BL, Zhang X (2009) How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 35:403–408

    Article  CAS  PubMed  Google Scholar 

  • Chong YK, Toh TB, Zaiden N, Poonepalli A, Leong SH, Ee Ling OC et al (2009) Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells 27:29–39

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  CAS  PubMed  Google Scholar 

  • Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD et al (2008) Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer 8:304

    Article  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  • Jordan CT (2009) Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4:203–205

    Article  CAS  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA 102:5814–5819

    Article  CAS  PubMed  Google Scholar 

  • Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S et al (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9:424–429

    Article  PubMed  Google Scholar 

  • Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A et al (2006) Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 66:11502–11513

    Article  CAS  PubMed  Google Scholar 

  • Mao XG, Zhang X, Xue XY, Guo G, Wang P, Zhang W et al (2009a) Brain tumor stem like cells identified by neural stem cell marker CD15. Transl Oncol 2:247–257

    PubMed  Google Scholar 

  • Mao XG, Zhang X, Zhen HN (2009b) Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 29:141–155

    Article  PubMed  Google Scholar 

  • Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116

    Article  CAS  PubMed  Google Scholar 

  • Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA et al (2008) Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514

    Article  PubMed  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  CAS  PubMed  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  • Sundlisaeter E, Wang J, Sakariassen PO, Marie M, Mathisen JR, Karlsen BO et al (2006) Primary glioma spheroids maintain tumourogenicity and essential phenotypic traits after cryopreservation. Neuropathol Appl Neurobiol 32:419–427

    Article  CAS  PubMed  Google Scholar 

  • Tan FC, Lee KH, Gouk SS, Magalhaes R, Poonepalli A, Hande MP et al (2007) Optimization of cryopreservation of stem cells cultured as neurospheres: comparison between vitrification, slow-cooling and rapid cooling freezing protocols. Cryo Lett 28:445–460

    Google Scholar 

  • The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  • Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der KD (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    Article  CAS  PubMed  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    CAS  PubMed  Google Scholar 

  • Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 112:761–768

    Article  Google Scholar 

  • Yi L, Zhou ZH, Ping YF, Chen JH, Yao XH, Feng H et al (2007) Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 20:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH et al (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265:124–134

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Junli Huo, Ms. Juan Li, Mrs. Yufen Shi, and Mrs. Xiaoyan Chen for their technical assistance in cell culture, immunohistochemistry, and QPCR. We appreciate Dr. Fucheng Ma (Department of Pathology, Xijing Hospital, Fourth Military Medical University) for confirming the pathological diagnosis of tumor samples and xenografts. We also thank Dr. Yao Yang (Institute of Neurosciences, The Fourth Military Medical University) for helpful suggestions. This study is supported by funds from the Fourth Military Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Additional information

Xing-gang Mao, Geng Guo and Peng Wang contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 19 kb)

Supplementary material 2 (JAVA 7.65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Xg., Guo, G., Wang, P. et al. Maintenance of Critical Properties of Brain Tumor Stem-like Cells After Cryopreservation. Cell Mol Neurobiol 30, 775–786 (2010). https://doi.org/10.1007/s10571-010-9505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9505-0

Keywords

Navigation