Skip to main content

Advertisement

Log in

Feline Immunodeficiency Virus as a Gene Transfer Vector in the Rat Nucleus Tractus Solitarii

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effects produced by altered synthesis of transmitters in neurons. However, it has not been studied in NTS. Therefore, we sought to determine whether FIV transfects rat NTS cells and to define the type of cell transfected. We found that injection of FIV encoding LacZ gene (FIVLacZ) into the NTS led to transfection of numerous NTS cells. Injection of FIVLacZ did not alter immunoreactivity (IR) for neuronal nitric oxide synthase, which we have shown resides in NTS neurons. A majority (91.7 ± 3.9%) of transfected cells contained IR for neuronal nuclear antigen, a neuronal marker; 2.1 ± 3.8% of transfected cells contained IR for glial fibrillary acidic protein, a glial marker. No transfected neurons or fibers were observed in the nodose ganglion, which sends afferents to the NTS. We conclude that FIV almost exclusively transfects neurons in the rat NTS from which it is not retrogradely transported. The cell-type specificity of FIV in the NTS may provide a molecular method to study local physiological functions mediated by potential neurotransmitters in the NTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ad:

Adenovirus vector

AdLacZ:

Adenovirus vector with LacZ gene

βGal:

β galactosidase

Ce:

Central subnucleus

CMV promotor:

Cytomegalovirus promotor

DMV:

Dorsal motor nucleus of vagus

FITC:

Fluorescein-5-isothiocyanate

FIV:

Feline immunodeficiency virus vector

FIVLacZ:

FIV vector with LacZ gene

Gr:

Gracilus nucleus

GFAP:

Glial fibrillary acidic protein

LacZ:

Gene encodes β galactosidase

NeuN:

Neuronal nuclear antigen

NG:

Nodose ganglion

Nnos:

Neuronal nitric oxide synthase

PGP9.5:

Protein gene product 9.5

NTS:

Nucleus tractus solitarii

PBS:

Phosphate buffered saline

RRX:

Rhodamine red X

Tr:

Tractus solitarius

References

  • Alisky JM, Hughes SM, Davidson BL (2003) Transduction of neurons lining the cerebral external capsules in mice with feline immunodeficiency virus based vectors. Neurosci Lett 351:120–124

    Article  CAS  PubMed  Google Scholar 

  • Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG (2006) Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 47:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Amalfitano A, Parks RJ (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr Gene Ther 2:111–133

    Article  CAS  PubMed  Google Scholar 

  • Bradley RM, King MS, Wang L, Shu X (1996) Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem Senses 21:377–385

    Article  CAS  PubMed  Google Scholar 

  • Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM Jr, Sauter SL, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL (2002) Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 99:6216–6221

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC, Chen AF, Morris M (2006) Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47:230–237

    Article  CAS  PubMed  Google Scholar 

  • Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ, Semple-Rowland SL, Raizada MK (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12:221–228

    CAS  PubMed  Google Scholar 

  • Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    CAS  PubMed  Google Scholar 

  • Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 3:219–223

    Article  CAS  PubMed  Google Scholar 

  • Debus E, Weber K, Osborn M (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 25:193–203

    Article  CAS  PubMed  Google Scholar 

  • Duale H, Kasparov S, Paton JF, Teschemacher AG (2005) Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 90:71–78

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE, Simonian SX, Norris PJ, Emson PC (1996) Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Endocrinol 8:73–82

    CAS  Google Scholar 

  • Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A (2003) Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 26:325–331

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu S, Lu B, Gerard NP, Gerard C, Ozawa K, Saido TC (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci 24:991–998

    Article  CAS  PubMed  Google Scholar 

  • Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL (1999) Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73:4991–5000

    CAS  PubMed  Google Scholar 

  • Kalia M, Mesulam M-M (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: I. the cervical vagus and nodose ganglion. J Comp Neurol 193:435–465

    Article  CAS  PubMed  Google Scholar 

  • Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AJ, Jarrott B (1996) Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 48:21–53

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Talman WT (2005) Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J Chem Neuroanat 29:179–191

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Talman WT (2006) Vesicular glutamate transporters and neuronal nitric oxide synthase colocalize in aortic depressor afferent neurons. J Chem Neuroanat 32:54–64

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Cassell MD, Sandra A, Talman WT (1998) Direct evidence for nitric oxide synthase in vagal afferents to the nucleus tractus solitarii. Neuroscience 84:549–558

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Edwards RH, Fremeau RT, Fujiyama F, Kaneda K, Talman WT (2004) Localization of vesicular glutamate transporters colocalizes with and neuronal nitric oxide synthase in rat nucleus tractus solitarii. Neuroscience 123:247–255

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Taktakishvili O, Talman WT (2007) Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 1171:42–51

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein PR, Castro MG (2003) Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences. Gene Ther 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, Takeshita A (2000) Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36:1023–1028

    CAS  PubMed  Google Scholar 

  • Simonian SX, Herbison AE (1996) Localization of neuronal nitric oxide synthase-immunoreactivity within sub-populations of noradrenergic A1 and A2 neurons in the rats. Brain Res 732:247–252

    Article  CAS  PubMed  Google Scholar 

  • Sinnayah P, Lindley TE, Staber PD, Cassell MD, Davidson BL, Davisson RL (2002) Selective gene transfer to key cardiovascular regions of the brain: comparison of two viral vector systems. Hypertension 39:603–608

    Article  CAS  PubMed  Google Scholar 

  • Talman WT (1989) Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102:247–252

    Article  CAS  PubMed  Google Scholar 

  • Talman WT (1997) Glutamatergic transmission in the nucleus tractus solitarii: from server to peripherals in the cardiovascular information superhighway. Braz J Med Biol Res 30:1–7

    CAS  PubMed  Google Scholar 

  • Talman WT, Lin LH (2006) Glutamatergic and nitroxidergic neurotransmission in the nucleus tractus Solitarii. In: Misu Y, Goshima Y (eds) Neurobiology of DOPA as a neurotransmitter. CRC Press, Boca Raton, pp 203–216

    Google Scholar 

  • Toupet K, Compan V, Crozet C, Mourton-Gilles C, Mestre-Frances N, Ibos F, Corbeau P, Verdier JM, Perrier V (2008) Effective gene therapy in a mouse model of prion diseases. PLoS ONE 3:e2773

    Article  PubMed  Google Scholar 

  • Vasquez EC, Beltz TG, Haskell RE, Johnson RF, Meyrelles SS, Davidson BL, Johnson AK (2001) Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system. Exp Neurol 167:260–271

    Article  CAS  PubMed  Google Scholar 

  • Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316

    Article  CAS  PubMed  Google Scholar 

  • Wells DJ, Maule J, McMahon J, Mitchell R, Damien E, Poole A, Wells KE (1998) Evaluation of plasmid DNA for in vivo gene therapy: factors affecting the number of transfected fibers. J Pharm Sci 87:763–768

    Article  CAS  PubMed  Google Scholar 

  • Witlox MA, Lamfers ML, Wuisman PI, Curiel DT, Siegal GP (2007) Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone 40:797–812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by NIH Grant R01 HL 59593 (to W. T. Talman), NIH Grant R01 HL 088090 (to L. H. Lin and W. T. Talman), and a VA Merit Review Tab 14 (to W. T. Talman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L.H., Langasek, J.E., Talman, L.S. et al. Feline Immunodeficiency Virus as a Gene Transfer Vector in the Rat Nucleus Tractus Solitarii. Cell Mol Neurobiol 30, 339–346 (2010). https://doi.org/10.1007/s10571-009-9456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9456-5

Keywords

Navigation