Skip to main content

Advertisement

Log in

Effects of Levetiracetam in Lipid Peroxidation Level, Nitrite–Nitrate Formation and Antioxidant Enzymatic Activity in Mice Brain After Pilocarpine-Induced Seizures

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

Oxidative stress has been implicated in a large number of human degenerative diseases, including epilepsy. Levetiracetam (LEV) is a new antiepileptic agent with broad-spectrum effects on seizures and animal models of epilepsy. Recently, it was demonstrated that the mechanism of LEV differs from that of conventional antiepileptic drugs. Objectifying to investigate if LEV mechanism of action involves antioxidant properties, lipid peroxidation levels, nitrite–nitrate formation, catalase activity, and glutathione (GSH) content were measured in adult mice brain. The neurochemical analyses were carried out in hippocampus of animals pretreated with LEV (200 mg/kg, i.p.) 60 min before pilocarpine-induced seizures (400 mg/kg, s.c.). The administration of alone pilocarpine, 400 mg/kg, s.c. (P400) produced a significant increase of lipid peroxidation level in hippocampus. LEV pretreatment was able to counteract this increase, preserving the lipid peroxidation level in normal value. P400 administration also produced increase in the nitrite–nitrate formation and catalase activity in hippocampus, beyond a decrease in GSH levels. LEV administration before P400 prevented the P400-induced alteration in nitrite–nitrate levels and preserved normal values of catalase activity in hippocampus. Moreover, LEV administration prevented the P400-induced loss of GSH in this cerebral area. The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Bellissimo, M. I., Amado, D., Abdalla, D. S., Ferreira, E. C., Cavalheiro, E. A., and Naffah-Mazzacoratti, M. G. (2001). Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res. 46:121–128.

    Article  Google Scholar 

  • Bonan, C. D., Walz, R., Pereira, G. S., Worm, P. V., Battastini, A. M. O., Cavalheiro, E. A., Izquierdo, I., and Sarkis, J. J. F. (2000). Changes in synaptosomal ectonucleotidase activities after status epilepticus induced by pilocarpine and kainic acid. Epilepsy Res. 39:229–238.

    Article  Google Scholar 

  • Brunbech, L., and Sabers, A. (2002). Effect of antiepileptic drugs on cognitive function in individuals with epilepsy: A comparative review of newer versus older agents. Drugs 62:593–604.

    Article  Google Scholar 

  • Cavalheiro, E. A., Fernandes, M. J., Turski, L., and Naffah-Mazzacoratti, M. G. (1994). Spontaneous recurrent seizures in rats: Amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11.

    Article  Google Scholar 

  • Cavalheiro, E. A., Leite, J. P., Bortolotto, Z. A., Turski, W. A., Ikonomidou, C., and Turski, L. (1991). Long-term effects of pilocarpine in rats: Structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782.

    Google Scholar 

  • Cereghino, J., Biton, V., Abou-Khalil, B., Dreifuss, F., Gauer, L. J., and Leppik, I. (2000). Levetiracetam for partial seizures: Results of a double-blind randomized clinical trial. Neurology 55:236–242.

    Article  Google Scholar 

  • Costa, M. S., Rocha, J. B., Perosa, S. R., Cavalheiro, E. A., and Naffah-Mazzacoratti Mda, G. (2004). Pilocarpine-induced status epilepticus increases glutamate release in rat hippocampal synaptosomes. Neurosci. Lett. 356:41–44.

    Article  Google Scholar 

  • Dal-Pizzol, F., Klamt, F., Vianna, M. M., Schroder, N., Quevedo, J., Benfato, M. S., Moreira, J. C., and Walz, R. (2000). Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci. Lett. 291:179–182.

    Article  Google Scholar 

  • Dooley, M., and Plosker, G. L. (2000). Levetiracetam: A review of its adjunctive use in the management of partial onset seizures. Drugs 60:871–893.

    Article  Google Scholar 

  • Dugan, L. L., and Choi, D. W. (1994). Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35:17–21.

    Article  Google Scholar 

  • Dugan, L. L., and Choi, D. W. (1999). Hypoxic–ischemic brain injury and oxidative stress. In Siegel, G. J., Agranoff, B. W., Albers, E. W., Fisher, S. K., and Uhler, M. D. (eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th edn, Williams & Wilkins, Lippincott, Baltimore, pp. 722–723.

    Google Scholar 

  • Ferrer, I., Lopez, E., Blanco, R., Rivera, R., Krupinski, J., and Marti, E. (2000). Differential c-Fos and caspase expression following kainic acid excitotoxicity. Acta Neuropathol. 99:245–256.

    Article  Google Scholar 

  • Frantseva, M. V., Perez Velazquez, J. L., Tsoraklidis, G., Mendonca, A. J., Adamchik, Y., Mills, L. R., Carlen, P. L., and Burnham, M. W. (2000a). Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435.

    Article  Google Scholar 

  • Frantseva, M. V., Velazquez, J. L., Hwang, P. A., and Carlen, P. L. (2000b). Free radical production correlates with cell death in an in vitro model of epilepsy. Eur. J. Neurosci. 12:1431–1439.

    Article  Google Scholar 

  • Freitas, R. M., Felipe, C. F. B., Nascimento, V. S., Oliveira, A. A., Viana, G. S. B., and Fonteles, M. M. F. (2003). Pilocarpine-induced seizures in adult rats: Monoamine content and muscarinic and dopaminergic receptor changes in the striatum. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 136:103–108.

    Article  Google Scholar 

  • Freitas, R. M., Nascimento, V. S., Vasconcelos, S. M. M., Sousa, F. C. F., Viana, G. S. B., and Fonteles, M. M. F. (2004a). Catalase activity in cerebellum, hippocampus, frontal cortex and striatum after status epilepticus induced by pilocarpine in Wistar rats. Neurosci. Lett. 365:102–105.

    Article  Google Scholar 

  • Freitas, R. M., Sousa, F. C. F., Vasconcelos, S. M. M., Viana, G. S. B., and Fonteles, M. M. F. (2004b). Pilocarpine-induced status epilepticus in rats: Lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharmacol. Biochem. Behav. 78:327–332.

    Article  Google Scholar 

  • Gibbs, J. E., Walker, M. C., and Cock, H. R. (2006). Levetiracetam: Antiepileptic properties and protective effects on mitochondrial dysfunction in experimental status epilepticus. Epilepsia 47(3):469–478.

    Article  PubMed  CAS  Google Scholar 

  • Gower, A. J., Hirsch, E., Boehrer, A., Noyer, M., and Marescaux, C. (1995). Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res. 22:207–213.

    Article  Google Scholar 

  • Green, L. C., Tannenbaum, S. R., and Goldman, P. (1981). Nitrate synthesis in the germfree and conventional rat. Science 212:56–58.

    Article  Google Scholar 

  • Gupta, Y. K., Chaudhary, G., Sinha, K., and Srivastava, A. K. (2001). Protective effect of resveratrol against intracortical FeCl3-induced model of posttraumatic seizures in rats. Methods Find. Exp. Clin. Pharmacol. 23:241–244.

    Article  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine, Oxford Sci., London.

    Google Scholar 

  • Huong, N. T., Matsumoto, K., Kasai, R., Yamasaki, K., and Watanabe, H. (1998). In vitro antioxidant activity of Vietnamese ginseng saponin and its components. Biol. Pharm. Bull. 21:978–981.

    Google Scholar 

  • Kirkby, R. D., Carroll, D. M., Grossman, A. B., and Subramaniam, S. (1996). Factors determining proconvulsant and anticonvulsant effects of inhibitors of nitric oxide synthase in rodents. Epilepsy Res. 24:91–100.

    Article  Google Scholar 

  • Klitgaard, H., Matagne, A., Gobert, J., and Wülfert, E. (1998). Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur. J. Pharmacol. 353:191–206.

    Article  Google Scholar 

  • Klitgaard, H., Matagne, A., Grimee, R., Vanneste-Goemaere, J., and Margineanu, D. (2003). Eletrophysiological, neurochemical, and regional effects of levetiracetam in the rat pilocarpine model of temporal lobe epilepsy. Seizure 12:92–100.

    Article  Google Scholar 

  • Liu, K. J., Liu, S., Morrow, D., and Peterson, S. L. (2002). Hydroethidine detection of superoxide production during the lithium-pilocarpine model of status epilepticus. Epilepsy Res. 49:226–238.

    Article  Google Scholar 

  • Löscher, W., and Hönack, D. (1993). Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur. J. Pharmacol. 232:147–158.

    Article  Google Scholar 

  • Lowry, H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the follin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  • Lukyanetz, E. A., Shkryl, V. M., and Kostyuk, P. G. (2002). Selective blocked of N-type calcium channels by Levetiracetam. Epilepsia 43(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, B., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjellieh, S. M., Matagne, A., and Fucks, B. (2004). The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. 101:9861–9866.

    Article  Google Scholar 

  • Madeja, M., Margineanu, D.-G., Gorji, A., Siep, E., Boerrigter, P., Kligaad, H., and Speckmann, E.-J. (2003). Reduction of voltage-operated potassium currents by levetiracetam: A novel antiepileptic mechanism of action? Neuropharmacology 45:661–671.

    Article  Google Scholar 

  • Maehly, A. C., and Chance, B. (1954). The assay catalases and peroxidases. Methods Biochem. Anal. 1:357–359.

    Article  Google Scholar 

  • Marini, H., Costa, C., Passaniti, M., Esposito, M., Campo, G. M., Ientile, R., Adamo, E. B., Marini, R., Calabresi, P., Altavilla, D., Minutoli, L., Pisani, F., and Squadrito, F. (2004). Levetiracetam protects against kainic acid-induced toxicity. Life Sci. 74:1253–1264.

    Article  Google Scholar 

  • McDonough, S. H., and Shih, T. M. (1997). Neuropharmacological mechanisms of nerve agent induced seizure and neuropathology. Neurosci. Biobehav. Rev. 21:559–579.

    Article  Google Scholar 

  • Murashima, Y. L., Yoshii, M., and Suzuki, J. (2002). Ictogenesis and epileptogenesis in EL mice. Epilepsia 43:130–135.

    Article  Google Scholar 

  • Naffah-Mazzacoratti, M. G., Cavalheiro, E. A., Ferreira, E. C., Abdalla, D. S. P., Amado, D., and Bellissimo, M. I. (2001). Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res. 46:121–128.

    Article  Google Scholar 

  • Nascimento, V. S., D’alva, M. S., Oliveira, A. A., Freitas, R. M., Vasconcelos, S. M. M., Sousa, F. C. F., and Viana, M. M. F. (2005). Antioxidant effect of nimodipine in young rats after pilocarpine-induced seizures. Pharmacol. Biochem. Behav. 82:11–16.

    Article  Google Scholar 

  • Oliveira, A. A., Nogueira, C. R. A., Nascimento, V. S., Aguiar, L. M. V., Freitas, R. M., Sousa, F. C. F., Viana, G. S. B., and Fonteles, M. M. F. (2005). Evaluation of levetiracetam effects on pilocarpine-induced seizures: Cholinergic muscarinic system involvement. Neurosci. Lett. 385:184–188.

    Article  Google Scholar 

  • Patel, M., Liang, L. P., and Roberts, L. J. II. (2001). Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J. Neurochem. 79:1065–1069.

    Article  Google Scholar 

  • Patel, M. (2004). Mitochondrial dysfunction and oxidative stress: Cause and consequence of epileptic seizures. Free Radic. Biol. Med. 37(12):1951–1962.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, P., and Margineanu, D. G. (2002). Levetiracetam opposes the action of GABAA antagonists in hypothalamic neurons. Neuropharmacology 42:346–352.

    Article  Google Scholar 

  • Radenovic, L., and Selakovic, V. (2005). Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res. Bull. 67:133–141.

    Article  Google Scholar 

  • Rajasekaran, K., Jayakumar, R., and Kaliyamurthy, V. (2003). Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res. 979:85–97.

    Article  Google Scholar 

  • Rajasekaran, K. (2005). Seizure-induced oxidative stress in rat brain regions: Blockade by nNOS inhibition. Pharmacol. Biochem. Behav. 80:263–272.

    Article  Google Scholar 

  • Rigo, J. M., Hans, G., Nguyen, L., Rocher, V., Belachew, S., Malgrange, B., Leprince, P., Moonen, G., Selak, I., Matagne, A., and Klitgaard, H. (2002). The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br. J. Pharmacol. 136:659–762.

    Article  Google Scholar 

  • Sah, R., Galeffi, F., Ahrens, R., Jordan, G., and Schwartz-Bloom, R. D. (2002). Modulation of the GABAA gated chloride channel by reactive oxygen species. J. Neurochem. 80:383–391.

    Article  PubMed  CAS  Google Scholar 

  • Sawas, A. H., and Gilbert, J. C. (1985). Lipid peroxidation as a possible mechanism for the neurotoxic and nephrotoxic effects of a combination of lithium carbonate and haloperidol. Arch. Int. Pharmacodyn. 12:276–301.

    Google Scholar 

  • Sedlak, J., and Lindsay, R. H. (1998). Estimation of total protein bound and nonprotein sulfhydril groups in tissues with Ellman reagents. Anal. Biochem. 25:192–205.

    Article  Google Scholar 

  • Sharief, M. K., Singh, P., Sander, J. W. A. S., Patsalos, P. N., and Shorvon, S. D. (1996). Efficacy and tolerability study of ucb L059 in patients with refractory epilepsy. J. Epilepsy 9:106–112.

    Article  Google Scholar 

  • Shi, M. M., Kugelman, A., Iwamoto, T., Tian, L., and Forman, H. J. (1994). Quinone induced oxidative stress elevates glutathione and induces glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J. Biol. Chem. 269:26512–26517.

    Google Scholar 

  • Sies, H. (1985). Oxidative stress: Introductory remarks. In Sies, H. (ed.), Oxidative Stress. Academic, New York, pp. 1–7.

    Google Scholar 

  • Simonié, A., Laginja, J., Varljen, J., Zupan, G., and Erakovié, V. (2000). Lithium plus pilocarpine induced status epilepticus-biochemical changes. Neurosci. Res. 36:157–166.

    Article  Google Scholar 

  • Tejada, S., Roca, C., Sureda, A., Rial, R. V., Gamundí, A., and Esteban, S. (2006). Antioxidant response analysis in the brain after pilocarpine treatments. Brain Res. 69:587–592.

    Google Scholar 

  • Waltz, R., Moreira, J. C. F., Benfato, M. S., Quevedo, J., Schorer, N., Vianna, M. M. R., Klamt, F., and Dal-Pizzol, F. (2000). Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine and kainic acid in Wistar rats. Neurosci. Lett. 291:179–182.

    Article  Google Scholar 

  • Yamamoto, H., and Tang, H. (1996). Melatonin attenuates l-cysteine-induced seizures and lipid peroxidation in the brain of mice. J. Pineal Res. 21:108–113.

    Article  Google Scholar 

  • Zona, C., Niespodziany, I., Marchetti, C., Klitgaard, H., Bernardi, G., and Margineanu, D. G. (2001). Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+currents. Seizure 10:279–286.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful for the kind donation of levetiracetam from UCB Pharmaceutical Sector. The useful comments of Dr. Alain Matagne and UCB reviewers are also gratefully acknowledged. This work was supported by research grants from the Brazilian National Research Council (CNPq). A.A.O., R.M.F., and L.M.V.A are Fellows from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, A.A., Almeida, J.P.C., Freitas, R.M. et al. Effects of Levetiracetam in Lipid Peroxidation Level, Nitrite–Nitrate Formation and Antioxidant Enzymatic Activity in Mice Brain After Pilocarpine-Induced Seizures. Cell Mol Neurobiol 27, 395–406 (2007). https://doi.org/10.1007/s10571-006-9132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9132-y

KEY WORDS

Navigation