Skip to main content
Log in

Cotton fabrics modified for use in oil/water separation: a perspective review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This article provides a perspective review on the use of modified cotton fabrics for oil–water separation. The principles of surface hydrophobicity of cotton fabrics are first described, from which the basis for producing superhydrophobic surfaces is presented. Then the preparation methods to convert hydrophilic cotton fabrics to hydrophobic fabrics are reviewed and discussed. Based on literature results the way to design novel preparation methods, the need to summarize testing protocols, and the comprehensive technoeconomic and sustainability analyses, are proposed. A demonstrative cotton fabrics test is used to reveal the significant role of conjugated fluid flows and surface interactions under different application scenarios for determining the separation efficiency of the oil–water mix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed SB, Khalil MMA, Moataz S, Shaker E (2020) Novel superhydrophobic surface of cotton fabrics for removing oil or organic solvents from contaminated water. Cellulose 27:7703–7719

    Google Scholar 

  • Anjum AS, Ali M, Sun KC, Riaz R, Jeong SH (2020) Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile. J Colloid Interf Sci 563:62–73

    CAS  Google Scholar 

  • Bai X, Zhao Z, Yang H, Li J (2019) ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures. Sep Purif Technol 221:294–302

    CAS  Google Scholar 

  • Ball V, Gracio J, Vila M, Singh MK, Boutigue MHM, Michel M, Bour J, Toniazzo V, Ruch D, Buehler MJ (2013) Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants. Langmuir 29:12754–21276

    CAS  PubMed  Google Scholar 

  • Bixler GD, Bhushan B (2014) Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale 6:76–96

    CAS  PubMed  Google Scholar 

  • Boticas I, Dias D, Ferreira D, Magalhães P, Silva R, Fangueiro R (2019) Superhydrophobic cotton fabrics based on ZnO nanoparticles functionalization. SN App Sci 1:1376

    Google Scholar 

  • Cai Y, Zhao Q, Quan X, Feng W, Wang Q (2020) Fluorine-free and hydrophobic hexadecyltrimethoxysilane-TiO2 coated mesh for gravity-driven oil/water separation. Colloid Surf A 586:124189

    CAS  Google Scholar 

  • Celik N, Torun I, Ruzi M, Esidir A, Onses MS (2020) Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem Eng J 396:125230

    CAS  Google Scholar 

  • Chen S, Xie Y, Xiao T, Zhao W, Li J, Zhao C (2018) Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. Chem Eng J 337:122–132

    CAS  Google Scholar 

  • Chen J, Zhou Y, Zhou C, Wen X, Xu S, Cheng J, Pi P (2019) Durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chem Eng J 370:1218–1227

    CAS  Google Scholar 

  • Cheng QY, Guan CS, Li YD, Zhu J, Zeng JB (2019) Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cell 26:2861–2872

    CAS  Google Scholar 

  • Cho EC, Jian CWC, Hsiao YS, Lee KC, Huang JH (2016) Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation. J Taiwan Inst Chem Engrs 67:476–483

    CAS  Google Scholar 

  • Chu Z, Seeger S (2014) Superamphiphobic surfaces. Chem Soc Rev 43:2784

    CAS  PubMed  Google Scholar 

  • Dashairya L, Rout M, Saha P (2018) Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Adv Composit Hybrid Mater 1:135–148

    CAS  Google Scholar 

  • Dashairya L, Barik DD, Saha P (2019) Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil–water separation. J Coat Technol Res 16:1021–1032

    CAS  Google Scholar 

  • Deng Y, Han D, Zhou DL, Liu ZQ, Zhang Q, Li Y, Fu Q (2019) Monodispersed hybrid microparticles based on polyhedral oligomeric silsesquioxane with good UV resistance and high thermal stability: from organic to inorganic. Polymer 178:121609

    CAS  Google Scholar 

  • Deng Y, Han D, Deng YY, Zhang Q, Chen F (2020) Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. Chem Eng J. https://doi.org/10.1016/j.colsurfa.2019.123880

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmeryan KD, Castano CE, Chaushev TA, Mohammadi R, Vladkova TG (2019) Silver-doped superhydrophobic carbon soot coatings with enhanced wear resistance and anti-microbial performance. Colloid Surf A 582:123880

    CAS  Google Scholar 

  • Fang Y, Liu C, Li M, Miao X, Pei Y, Yan Y, Xiao W, Wu L (2020) Facile generation of durable superhydrophobic fabrics toward oil/water separation via thiol-ene click chemistry. Ind Eng Chem Res 59:6130–6140

    CAS  Google Scholar 

  • Feng S, Li M, Zhang S, Zhang Y, Wang B, Wu L (2019) Superoleophobic micro-nanostructure surface formation of PVDF membranes by tannin and a condensed silane coupling agent. RSC Adv 9:32021–32026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer 50:1333–1350

    CAS  Google Scholar 

  • Foorginezhad S, Zerafat MM (2019) Fabrication of superhydrophobic coatings with self-cleaning properties on cotton fabric based on octa vinyl polyhedral oligomeric silsesquioxane/polydimethylsiloxane (OV-POSS/PDMS) nanocomposite. J Colloid Interf Sci 540:78–87

    CAS  Google Scholar 

  • Fu Y, Wang G, Ming X, Liu X, Hou B, Mei T, Li J, Wang J, Wang X (2018) Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon 130:250–256

    CAS  Google Scholar 

  • Girifalco LA, Good RJ (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem 61:904–909

    CAS  Google Scholar 

  • Gong X, He S (2020) Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability. ACS Omega 5:4100–4108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Wang Y, Zeng H, Betti M, Chen L (2019) Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain Chem Eng 7:11118–11128

    CAS  Google Scholar 

  • Guo D, Chen J, Hou K, Xu S, Cheng J, Wen X, Wang S, Huang C, Pi P (2018a) A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water separation. Appl Clay Sci 156:195–201

    CAS  Google Scholar 

  • Guo D, Chen J, Wen L, Wang P, Xu S, Cheng J, Wen X, Wang S, Huang C, Pi P (2018b) A superhydrophobic polyacrylate film with good durability fabricated via spray coating. J Mater Sci 53:15390–15400

    CAS  Google Scholar 

  • Guo H, Yang J, Xu T, Zhao W, Zhang J, Zhu Y, Wen C, Li Q, Sui X, Zhang L (2019) A robust cotton textile-based material for high-flux oil-water separation. ACS Appl Mater Interf 11:13704–13713

    CAS  Google Scholar 

  • Guo Q, Zhang T, Xu Z, Li X, Zhao Y (2020) A single covalently grafted fluorolayer imparts intrinsically hydrophilic foams with simultaneous oleophobicity and hydrophilicity for removing water from oils. Colloids Surf A 605:125380

    CAS  Google Scholar 

  • Hadji EM, Fu B, Abebe A, Bilal HM, Wang J (2020) Sponge-based materials for oil cleanups: a review. Front Chem Sci Eng 14:749–762

    CAS  Google Scholar 

  • He Y, Wan M, Wang Z, Zhang X, Zhao Y, Sun L (2019) Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton fabrics for oil/water separation. Surf Coat Technol 378:125079

    CAS  Google Scholar 

  • He T, Zhao H, Liu Y, Zhao C, Wang L, Wang H, Zhao Y, Wang H (2020) Facile fabrication of superhydrophobic titanium dioxide-composited cotton fabrics to realize oil-water separation with efficiently photocatalytic degradation for water-soluble pollutants. Colloid Surf A 585:124080

    CAS  Google Scholar 

  • Heitz J, Dickinson JT (1999) Characterization of particulates accompanying laser ablation of pressed polytetrafluorethylene (PTFE) targets. Appl Phys A 68:515–523

    CAS  Google Scholar 

  • Hou K, Zeng Y, Zhou C, Chen J, Wen X, Xu S, Cheng J, Pi P (2018) Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry. Chem Eng J 33:150–159

    Google Scholar 

  • Hu MX, Yang Q, Xu ZK (2006) Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J Membr Sci 285:196–205

    CAS  Google Scholar 

  • Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    CAS  Google Scholar 

  • Huang S, Zhang Y, Shi J, Huang W (2016) Superhydrophobic particles derived from nature-inspired polyphenol chemistry for liquid marble formation and oil spills treatment. ACS Sustain Chem Eng 4:676–681

    CAS  Google Scholar 

  • Huang W, Zhang L, Lai X, Li H, Zeng X (2020) Highly hydrophobic F-rGO@wood sponge for efficient clean-up of viscous crude oil. Chem Eng J 386:123994

    CAS  Google Scholar 

  • Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3321

    CAS  Google Scholar 

  • Jannatun N, Taraqqi-A-Kamal A, Rehman R, Kumar Kuker J, Lahiri S (2020) A facile cross-linking approach to fabricate durable and self-healing superhydrophobic coatings of SiO2-PVA@PDMS on cotton textile. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.109836

    Article  Google Scholar 

  • Jeyasubramanian K, Hikku GS, Preethi AVM, Benitha VS, Selvakumar N (2016) Fabrication of water repellent cotton fabric by coating nano particle impregnated hydrophobic additives and its characterization. J Ind Eng Chem 37:180–189

    CAS  Google Scholar 

  • Jiang JH, Zhu LP, Li XL, Xu YY, Zhu BK (2010) Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. J Membr Sci 364:194–202

    CAS  Google Scholar 

  • Jiang C, Liu W, Yang M, Liu C, He S, Xie Y, Wang Z (2019) Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry. Appl Surf Sci 463:34–44

    CAS  Google Scholar 

  • Kamlangkla K, Paosawatyanyong B, Pavarajarn V, Hodak JH, Hodak SK (2010) Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment. Appl Sur Sci 256:5888–5897

    CAS  Google Scholar 

  • Kim JH, Liu G, Kim SH (2006) Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J Mater Chem 16:977–981

    CAS  Google Scholar 

  • Krasowska M, Zawala J, Malysa K (2009) Air at hydrophobic surfaces and kinetics of three phase contact formation. Adv Colloid Interf Sci 147–148:155–169

    Google Scholar 

  • Kwok DY, Neumann AW (1999) Contact angle measurement and contactangle interpretation. Adv Colloid Interf Sci 81:167–249

    CAS  Google Scholar 

  • Lee YJ, Lee DJ (2019) Impact of adding metal nanoparticles on anaerobic digestion performance—a review. Bioresour Technol 292:121926

    CAS  PubMed  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Y, Zou C, Shao J (2015) Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates. Appl Sur Sci 357:2327–2332

    CAS  Google Scholar 

  • Li S, Yang P, Liu X, Zhang J, Xie W, Wang C, Liu C, Guo Z (2019) Graphene oxide based dopamine mussel-like crosslinked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J Mater Chem A 7:16902

    CAS  Google Scholar 

  • Lin J, Lin F, Liu R, Li P, Fang S, Ye W, Zhao S (2020) Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep Purif Technol 231:115898

    CAS  Google Scholar 

  • Liu YR, Huang YD, Liu L (2007) Thermal stability of POSS/methylsilicone nanocomposites. Compost Sci Tech 67:2864–2876

    CAS  Google Scholar 

  • Liu F, Ma M, Zang D, Gao Z, Wang C (2013) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohyd Polym 97:59–64

    Google Scholar 

  • Liu D, Yuan L, Xu H, Tian H, Xiang A (2019) PVA grafted POSS hybrid for high performance polyvinyl alcohol films with enhanced thermal, hydrophobic and mechanical properties. Polym Comp 40:2768–2776

    CAS  Google Scholar 

  • Lu T, Qi D, Zhang D, Fu K, Li Y, Zhao H (2020) Fabrication of recyclable multi-responsive magnetic nanoparticles for emulsified oil-water separation. J Clean Prod 255:120293

    CAS  Google Scholar 

  • Lyon BP, Cowie WJ, Maes T, Quesne WJFL (2020) Marine plastic litter in the ROPME sea area: current knowledge and recommendations. Ecotoxicol Environ Saf 187:109839

    Google Scholar 

  • Mai Z, Xiong Z, Shu X, Liu X, Zhang H, Yin X, Zhou Y, Liu M, Zhang M, Xu W, Chen D (2018) Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohyd Polym 199:516–525

    CAS  Google Scholar 

  • Matin A, Baig U, Akhtar S, Merah N, Gondal MA, Bake AH, Ibrahim A (2019) UV-resistant and transparent hydrophobic surfaces with different wetting states by a facile dip-coating method Progr. Org Coat 136:105192

    CAS  Google Scholar 

  • McMullin E, Rebar HT, Mather PT (2016) Biodegradable thermoplastic elastomers incorporating POSS: synthesis, microstructure, and mechanical Properties. Macromolecules 49:3769–3779

    CAS  Google Scholar 

  • Mendoza AI, Moriana R, Hillborg H, Stromberg E (2019) Super-hydrophobic zinc oxide/silicon rubber nanocomposite surfaces. Surf Interf 14:146–157

    CAS  Google Scholar 

  • Meng G, Yan J, Wu J, Zhang W, Wang Y, Wang Q, Liu Z, Guo X (2020) Thiol-ene click chemistry construct superhydrophobic cotton fabric for high-efficiency water-in-oil emulsion separation. Fibers Polym 21:245–251

    CAS  Google Scholar 

  • Nanda D, Sahoo A, Kumar A, Bhushan B (2019) Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces. J Colloid Interf Sci 535:50–57

    CAS  Google Scholar 

  • Ning N, Wang S, Zhang Z, Feng Z, Zheng Z, Yu B, Tian B, Zhang L (2019) Superhydrophobic coating with ultrahigh adhesive force and good anti-scratching on elastomeric substrate by thiol-ene click chemistry. Chem Eng J 373:318–324

    CAS  Google Scholar 

  • Oliver JF, Huh C, Mason SG (1977) Resistance to spreading of liquids by sharp edges. J Colloid Interf Sci 59:568–581

    CAS  Google Scholar 

  • Pan G, Xiao X, Ye Z (2019) Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency. Surf Coat Technol 360:318–328

    CAS  Google Scholar 

  • Qi Y, Chen S, Zhang J (2019) Fluorine modification on titanium dioxide particles: improving the anti-icing performance through a very hydrophobic surface. Appl Surf Sci 476:161–173

    CAS  Google Scholar 

  • Qiang S, Chen K, Yin Y, Wang C (2017) Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability. Mater Design 116:395–402

    CAS  Google Scholar 

  • Qin X, Wang B, Zhang X, Shi Y, Ye S, Feng Y, Liu C, Shen C (2019) Superelastic and durable hierarchical porous thermoplastic polyurethane monolith with excellent hydrophobicity for highly efficient oil/water separation. Ind Eng Chem Res 58:20291–20299

    CAS  Google Scholar 

  • Rana M, Chen JT, Yang S, Ma PC (2016) Biomimetic superoleophobicity of cotton fabrics for efficient oil-water separation. Adv Mater Interf 3:1600128

    Google Scholar 

  • Rostami A, Pirsaheb M, Moradi G, Derakhshan AA (2019) Fabrication of durable superhydrophobic nanofibrous filters for oil-water separation using three novel modified nanoparticles (ZnO-NSPO, AlOO-NSPO, and TiO2-NSPO). Polym Adv Technol 31:1–16

    Google Scholar 

  • Sadabad FB, Zhang H, Trouillet V, Welle A, Plumeré N, Levkin PA (2017) UV-triggered polymerization, deposition, and patterning of plant phenolic compounds. Adv Funct Mater 27:170012

    Google Scholar 

  • Sarmadi M. 2013. Advantages and Disadvantages of Plasma Treatment of Textile Materials. 21st Int. Sym. on Plasma Chem

  • Shafiee BM, Torkaman R, Mahmoudi M, Emadi R, Karamian E (2019) An improvement in corrosion resistance of 316L AISI coated using PCL gelatin composite by dip-coating method. Progr Org Coat 130:200–205

    Google Scholar 

  • Shafrin E.G., Zisman W.A. 1964. Upper limits to the contact angles of liquids on solids. In: Chapter 9. Contact Angle, Wettability, and Adhesion. Advances in Chemistry. American Chemistry Society, Washington DC

  • Shang Q, Liu C, Zhou Y (2018) One-pot fabrication of robust hydrophobia and superoleophilic cotton fabrics for effective oil-water separation. J Coat Technol Res 15:65–75

    CAS  Google Scholar 

  • Shao Y, Zhao J, Fan Y, Wan Z, Lu L, Zhang Z, Ming W, Ren L (2020) Shape memory superhydrophobic surface with switchable transition between “lotus effect” to “rose petal effect.” Chem Eng J 382:122989

    CAS  Google Scholar 

  • Shen L, Lai Y, Fu H (2019a) Fabrication of flower clusters-like superhydrophobic surface via UV curable coating of ODA and V-PDMS. J Appl Polym Sci 136:48210

    Google Scholar 

  • Shen L, Pan Y, Fu H (2019b) Fabrication of UV curable coating for super hydrophobic cotton fabrics. Polym Eng Sci 59:452–459

    Google Scholar 

  • Shen YJ, Kong QR, Fang LF, Qiu ZL, Zhu BK (2021) Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/salt separation. J Membr Sci 623:119044

    CAS  Google Scholar 

  • Singh AK, Singh JK (2019) An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator. Progr Org Coat 131:301–310

    CAS  Google Scholar 

  • Song B, Meng L, Huang Y (2013) Preparation and characterization of (POSS/TiO2)n multi-coatings based on PBO fiber surface for improvement of UV resistance. Fibers Polym 14:375–381

    CAS  Google Scholar 

  • Song Q, Wang H, Han S, Wang J, Zhang B, Zhang Y (2020) Halloysite nanotubes functionalized cotton fabric for oil/water separation. Progr Org Coat 148:105839

    CAS  Google Scholar 

  • Su C, Yang H, Song S, Lu B, Chen R (2017) A magnetic superhydrophobic/oleophobic sponge for continuous oil-water separation. Chem Eng J 309:366–373

    CAS  Google Scholar 

  • Subramanian BT, Alla JP, Essomba JS, Nishter NF (2020) Non-fluorinated superhydrophobic spray coatings for oil-water separation applications: an eco-friendly approach. J Clean Prod 256:120693

    Google Scholar 

  • Sun D, Wang W, Yu D (2016) Preparation of fluorine-free water repellent finishing via thiol-ene click reaction on cotton fabrics. Mater Lett 185:514–518

    CAS  Google Scholar 

  • Tao M, Xue L, Liu F, Jiang L (2014) An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv Mater 26:1942–1948

    Google Scholar 

  • Tian Y, Jiang L (2013) Intrinsically robust hydrophobicity. Nat Mater 12:291–292

    CAS  PubMed  Google Scholar 

  • Torun I, Ruzi M, Er F, Onses MS (2019) Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progr Org Coat 136:105279

    CAS  Google Scholar 

  • Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    CAS  PubMed  Google Scholar 

  • Wang C, Yao T, Wu J, Ma C, Fan Z, Wang Z, Cheng Y, Lin Q, Yang B (2009) Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl Mater Interf 11:2613–2617

    Google Scholar 

  • Wang CF, Huang HC, Chen LT (2015) Protonated melamine sponge for effective oil/water separation. Sci Rep 5:14294

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Elimelech M, Lin S (2016) Environmental applications of interfacial materials with special wettability. Environ Sci Technol 50:2132–2150

    CAS  PubMed  Google Scholar 

  • Wang Q, Yu M, Chen G, Chen Q, Tian J (2017a) Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation. J Mater Sci 52:2549–2559

    CAS  Google Scholar 

  • Wang H, Zhou H, Liu S, Shao H, Fu S, Rutledge GC, Lin T (2017b) Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Adv 7:33986–33993

    CAS  Google Scholar 

  • Wang Z, Ji S, Zhang J, Liu Q, He F, Peng S, Li Y (2018c) Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation. J Mater Chem A 6:13959–13967

    CAS  Google Scholar 

  • Wang Z, Han M, Zhang J, He F, Xu Z, Ji S, Peng S, Li Y (2019a) Designing preferable functional materials based on the secondary reactions of the hierarchical tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating. Chem Eng J 360:299–312

    CAS  Google Scholar 

  • Wang Y, Huang Z, Gurney RS, Liu S (2019b) Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloid Surf A 561:101–108

    CAS  Google Scholar 

  • Wang H, Zhang C, Zhou B, Zhang Z, Shen J, Du A (2020) Hydrophobic silica nanorod arrays vertically grown on melamine foams for oil/water separation. Appl Nano Mater 3:1479–1488

    CAS  Google Scholar 

  • Wenten IG, Khoiruddin K, Wardani AK, Aryantic PTP, Astuti DI, Komaladewi AAIAS (2020) Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. J Water Process Eng 34:101158

    Google Scholar 

  • Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J Membr Sci 327:244–253

    CAS  Google Scholar 

  • Xu ZG, Zhao Y, Wang HX, Wang XG, Lin T (2015) A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superolephobic for oil-water separation. Angew Chem Int Ed 54:4527–4530

    CAS  Google Scholar 

  • Yan X, Zhu X, Ruan Y, Xing T, Chen G, Zhou C (2020) Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation. Cellulose 27:7873–7885

    CAS  Google Scholar 

  • Yang M, Liu W, Jiang C, Xie Y, Shi H, Zhang F, Wang Z (2019) Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloid Surf A 570:172–181

    CAS  Google Scholar 

  • Yang M, Liu W, Liang L, Jiang C, Liu C, Xie Y, Shi H, Zhang F, Pi K (2020) A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil–water separation abilities based on TiO2 and POSS via thiol-ene click reaction. Cell 27:2847–2857

    CAS  Google Scholar 

  • Ye S, Wang B, Shi Y, Wang B, Zhang Y, Feng Y, Han W, Liu C, Shen C (2020) Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Compos Comm 21:100378

    Google Scholar 

  • Yuan R, Liu H, Chen Y, Liu Z, Li Z, Wang J, Jing G, Zhu Y, Yu P, Wang H (2019) Design ambient-curable superhydrophobic/electroactive coating toward durable pitting corrosion resistance. Chem Eng J 374:840–851

    CAS  Google Scholar 

  • Zeng T, Zhang P, Li X, Yin Y, Chen K, Wang C (2019) Facile fabrication of durable superhydrophobic and oleophobic surface on cellulose substrate via thiol-ene click modification. Appl Surf Sci 493:1004–1012

    CAS  Google Scholar 

  • Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704

    CAS  Google Scholar 

  • Zhang M, Wang C, Wang S, Li J (2013) Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohyd Polym 97:59–64

    CAS  Google Scholar 

  • Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK (2016) CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew Chem Int Ed 55:3054–3057

    CAS  Google Scholar 

  • Zhang Z, Li W, Wang W, Wang S, Qin C (2019) Reactive superhydrophobic paper from one-step spray-coating of cellulose based derivative. Appl Surf Sci 497:143816

    CAS  Google Scholar 

  • Zhang J, Huang D, Wu G, Chen SC, Wang YZ (2020a) Highly-efficient, rapid and continuous separation of surfactant-stabilized oil/water emulsions by selective under-liquid adhering emulsified droplets. J Hazard Mater 400:123132

    CAS  PubMed  Google Scholar 

  • Zhang J, Saleem R, Wang P, Wen H, Zhu Z, Huang W, Ibrahim MAM, Liu C (2020b) Polymer brush-grafted ZnO-modified cotton for efficient oil/water separation with abrasion/acid/alkali resistance and temperature ‘‘switch” property. J Colloid Interf Sci 580:822–833

    CAS  Google Scholar 

  • Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interf 5:7208–7214

    CAS  Google Scholar 

  • Zhou H, Chen R, Liu Q, Liu J, Yu J, Wang C, Zhang M, Liu P, Wang J (2019) Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chem Eng J 368:261–272

    CAS  Google Scholar 

Download references

Funding

This research received no financial support.

Author information

Authors and Affiliations

Authors

Contributions

TCL: Investigation; formal analysis; DJL Conceptualization; Writing—original draft.

Corresponding author

Correspondence to Duu-Jong Lee.

Ethics declarations

Conflict of interest

No conflicts of interests.

Availability of data and material

Can be obtained from corresponding author by reasonable requests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, TC., Lee, DJ. Cotton fabrics modified for use in oil/water separation: a perspective review. Cellulose 28, 4575–4594 (2021). https://doi.org/10.1007/s10570-021-03850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03850-6

Keywords

Navigation