Skip to main content
Log in

Optimization of cellulase production by a novel endophytic fungus Pestalotiopsis microspora TKBRR isolated from Thalakona forest

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The present work focused on cellulase production in solid-state fermentation by a fungal isolate of Thalakona forest in Andhra Pradesh identified as Pestalotiopsis microspora TKBRR. Under normal conditions, yields of Filter Paperase (FPase), Carboxymethyl Cellulase (CMCase) and β-glucosidase (BGL) produced by P. microspora TKBRR in SSF were 13, 12 and 11 U/g DS whereas the corresponding yields of FPase, CMCase and BGL after optimization of process conditions and medium components through one stage approach—Central Composite Design in RSM were 15, 16 and 13 U/g DS, respectively in the present study. There was a marginal improvement in yields of cellulolytic enzymes by 2–4 units with the least interactions between factors. Of the four factors tested in the present study, only temperature and pH influenced production of the cellulolytic enzymes and P. microspora TKBRR in SSF exhibited a higher ratio of BGL to FPase in comparison to other cellulolytic organisms reported.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCD:

Central composite design

RSM:

Response surface methodology

FPase:

Filter paper cellulase

SSF:

Solid-state fermentation

CMC:

Carboxymethylcellulose

CMcase:

Carboxymethylcellulase

BGL:

β-Glucosidase

U/gDS:

Unit per gram dry weight substrate

ANOVA:

Analysis of variance

OFAT:

One factor at a time

References

  • Bajaj A, Mahajan R (2019) Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103:8711–8724

    Article  CAS  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas R, Persad A, Bisaria VS (2014) Production of cellulolytic enzymes. In: Bisaria VS (ed) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, pp 105–132. https://doi.org/10.1002/9781118845394

    Chapter  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2011.595385

    Article  Google Scholar 

  • Chen H, Qiu W (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28:556–562

    Article  CAS  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  Google Scholar 

  • Domingues FC, Queiroz JA, Cabral JMS, Fonseca LP (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microbiol Technol 26:394–401

    Article  CAS  Google Scholar 

  • El Baz AF, Shetia YMH, Eldin HAS, Elmekawy A (2018) Optimization of cellulase production by Trichodermma viride using response surface methodology. Curr Biotechnol 7:19–25

    Article  CAS  Google Scholar 

  • Ganguly R, Mukherjee SK (1995) Effects of different pure and complex carbon and nitrogen sources on production of cellulases by an isolated strain Penicillium purpurogenum. J Microbiol Biotech 10:47–58

    CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Ghose TK, Bisaria VS (1987) Measurement of hemicellulase activities part 1: xylanases. Pure Appl Chem 59:1739–1752

    Article  CAS  Google Scholar 

  • Gupta R, Khasa YP, Kumar A, Shrivastava B, Kuhad RC (2012) Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Catal B Enzyme 74:170–177

    Article  CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038

    Article  CAS  Google Scholar 

  • Hao XC, Yu XB, Yan ZL (2006) Optimization of the medium for the production cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology. Food Technol Biotechnol 44:89–94

    CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  Google Scholar 

  • Kellermann SJ, Rentmesiter A (2013) Current developments in cellulase engineering. Chem Biol Eng Rev 1:6–13

    Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  Google Scholar 

  • Kovacs K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi Z (2008) Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme Microbiol Technol 43:48–55

    Article  CAS  Google Scholar 

  • Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao G, Wang T, Zhou Z, Qu Y (2013) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb Technol 32:305–311. https://doi.org/10.1016/S0141-0229(02)00292-2

    Article  CAS  Google Scholar 

  • Mandels M, Weber J (1969) The production of cellulases. Adv Chem Ser 95:391–413

    Article  CAS  Google Scholar 

  • Nagraj AK, Singhvi M, Ravi Kumar V, Gokhale D (2014) Optimization studies for enhancing cellulase production by Penicillium janthinellum Mutant EU-21 using Response Surface Methodology. Bioresour Technol 9:1914–1923

    Google Scholar 

  • Narasimha G, Sridevi A, Viswanath B, Subhosh Chandra M, Rajasekhar Reddy B (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol 5:472–476

    CAS  Google Scholar 

  • Oriol E, Raimbault M, Roussos S, Viniegra-Gonzales G (1988) Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Appl Microbiol Biotechnol 27:498–503

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid State fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiol 158:58–68

    Article  CAS  Google Scholar 

  • Polyanna NH, Porto TS, Moreira KA, Pinto GAS, Cristina MSM, Ana LFP (2011) Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid state fermentation. Appl Biochem Biotechnol 165:1057–1067

    Article  CAS  Google Scholar 

  • Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of cellulase production by Penicillium sp. 3 Biotech 6:162. https://doi.org/10.1007/s13205-016-0483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveen Kumar Reddy G (2015) Exploration of fungal organisms isolated from Thalakona and Horsley hills for cellulase production. Ph.D. dissertation, Sri Krishnadevaraya University, Anantapur, India

  • Praveen Kumar Reddy G, Sridevi A, Dileepkumar K, Ramanjaneyulu G, Ramya A, Shanthi Kumari BS, Reddy BR (2016) Strian improvement of Aspergillus niger for production of cellulase in solid state fermentation. In: Bhima B, Anjana Devi T (eds) Microbial biotechnology: technological challenges & development trends. Apple Academic Press, New Jersy, pp 201–218

    Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:174–188

    Article  Google Scholar 

  • Rege B, Kao J, Polli J (2002) Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 16:237–246

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LFC, Ribeiro LF, Jorge JA, Polizeli MLTM (2014) Screening of filamentous fungi for xylanases and cellulases not inhibited by xylose and glucose. Br Biotechnol J 4:30–39

    Article  CAS  Google Scholar 

  • Romanelli AM, Sutton DA, Thompson EH, Rinaldi MG, Wickes BL (2010) Sequence based identification of filamentous basidiomycetous fungi from clinical specimens: a cautionary note. J Clin Microbiol 48:741–752

    Article  CAS  Google Scholar 

  • Saini JK, Anurag RK, Arya A, Kumbhar BK, Tewari L (2013) Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Ind Crop Prod 44:211–219

    Article  CAS  Google Scholar 

  • Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246

    Article  CAS  Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seiboth B, Herold S, Kubicek CP (2012) Metabolic engineering of inducer formation for cellulase andemicellulase gene expression in Trichoderma reesei. In: Wang X, Chen J, Quinn P (eds) Reprogramming Microbial Metabolic Pathways. Springer, New York, pp 367–390

    Chapter  Google Scholar 

  • Shajahan S, Ganesh Moorthy I, Sivakumar N, Selva Kumar R (2017) Statistical modelling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharasthra, India. J King Sau Univ Sci 29:302–310

    Article  Google Scholar 

  • Singh J, Kaur P (2012) Optimization of process parameters for cellulase production from Bacillus sp. JS14 in solid state fermentation using response surface methodology. Braz Arch Biol Technol 55:505–512

    Article  CAS  Google Scholar 

  • Singhania RR, Adsul M, Pandey A, Patel AK (2017a) 4-Cellulases. Curr Dev Biotechnol Bioeng. https://doi.org/10.1016/b9788-0444-63662-1-00004-x

    Article  Google Scholar 

  • Singhania RR, Patel AK, Saini R, Pandey A (2017b) 5-Industrial enzymes-β-glucosidases. Curr Dev Biotechnol Bioeng. https://doi.org/10.1016/b978-0-444-63662-1.00005-1

    Article  Google Scholar 

  • Singhvi MS, Gokhale DV (2019) Lignocellulose biomass: hurdles and challenges in its valorization. Appl Microbiol Biotechnol 103:9305–9320

    Article  CAS  Google Scholar 

  • Sinjaroosak S, Chaivaso T, Kittikun A (2019) Optimization of cellulase and xylanase production by Streptomyces thermocoprohilus TC13W using low cost pretreated oil palm empty fruit bunch. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-019-00720-y

    Article  Google Scholar 

  • Sridevi A, Narasimha G, Rajasekhar Reedy B (2009) Production of cellulase by Aspergillus niger on natural and pretreated lignocellulosic wastes. Internet J Microbiol 7:1–8

    Google Scholar 

  • Subhosh Chandra MG, Rajasekhar Reddy B (2013) Exoglucanase production by Apergiluus niger grown on wheat bran. Ann Microbiol 63:871–877

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environ Microbiol 43:777–780

    Article  CAS  Google Scholar 

  • Volkov PV, Rozhkova AM, Pravilnikov AG, Andrianov RM, Dotsenko GS, Bekkarevich AO, Koshelev AV, Okunev ON, Zorov IN, Sinitsin AP (2012) Production of enzyme preparations on the basis of Penicillium canescens recombinant strains with a high ability for hydrolysis of plant materials. Appl Biochem Microbiol 48:58–64

    Article  CAS  Google Scholar 

  • Vu VH, Pham TA, Kim K (2009) Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology 37(4):267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) In: Innis MA, Gelfand DH, Sninski JJ, White TJ (eds) PCR-protocols a guide to methods and applications. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic press, San Diego, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajasekhar Reddy Bontha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Screening of fungal cultures for cellulolytic activities (DOCX 113 kb)

10570_2020_3220_MOESM2_ESM.docx

Fig. S2 Three dimensional response surface plots showing (S2a) effect of temperature and pH (S2b) effect of temperature and moisture content (S2c) effect of temperature and urea concentration (S2d) effect of pH and moisture content (S2e) effect of pH and urea concentration (S2f) effect of moisture content and urea concentration on the production of FPase by P. microspora TKBRR under solid state fermentation (DOCX 731 kb)

10570_2020_3220_MOESM3_ESM.docx

Fig. S3 Three dimensional response surface plots showing (S3a) effect of temperature and pH (S3b) effect of temperature and moisture content (S3c) effect of temperature and urea concentration (S3d) effect of pH and moisture content (S3e) effect of pH and urea concentration (S3f) effect of moisture content and urea concentration on the production of CMCase by P. microspora TKBRR under solid state fermentation (DOCX 848 kb)

Table S1. Factors and their levels for CCD (DOCX 11 kb)

10570_2020_3220_MOESM5_ESM.docx

Table S2. Influence of incubation period on production of cellulolytic enzymes by P. microspora TKBRR in SSF (DOCX 12 kb)

Table S3. Influence of temperature on production of cellulolytic enzymes by P. microspora TKBRR in SSF (DOCX 12 kb)

Table S4. Influence of pH on production of cellulolytic enzymes by P. microspora TKBRR in SSF (DOCX 12 kb)

10570_2020_3220_MOESM8_ESM.docx

Table S5. Influence of Nitrogen sources on production of cellulolytic enzymes by P. microspora TKBRR in SSF (DOCX 12 kb)

10570_2020_3220_MOESM9_ESM.docx

Table S6. Influence of various surfactants on production of cellulolytic enzymes by P. microspora TKBRR in SSF (DOCX 12 kb)

Table S7. Analysis of variance for FPase (Partial sum of squares) (DOCX 14 kb)

Table S8. Analysis of variance for CMCase (Partial sum of squares) (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goukanapalle, P.K.R., Kanderi, D.K., Rajoji, G. et al. Optimization of cellulase production by a novel endophytic fungus Pestalotiopsis microspora TKBRR isolated from Thalakona forest. Cellulose 27, 6299–6316 (2020). https://doi.org/10.1007/s10570-020-03220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03220-8

Keywords

Navigation