Skip to main content
Log in

Plasma activation toward multi-stimuli responsive cotton fabric via in situ development of polyaniline derivatives and silver nanoparticles

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cotton fabrics have been known as one of the most common fibers due to its high absorption ability to chemicals, cheapness and high strength. The functionalization of natural fabrics with conductive polymers can produce conductive surfaces of high-performance textile with multifunctional properties. In the current work, conductive natural high-performance fabric was prepared by plasma assisted coating of cotton fabrics with different conductive polymers in presence or absence of silver nanoparticles. Nanostructured thin layer of polyaniline derivative was prepared in situ after plasma activation technique. Silver nanoparticles were deposited from silver nitrate solution by taking advantage of reduction capability of the conductive polymers. By changing the type of conductive polymer and the incorporation of silver nanoparticles, high-performance fabrics with altered or improved multifunctional properties were obtained including antibacterial, electrical conductivity, thermochromism, acid sensitivity and responsiveness to metal ions for a variety of potential purposes, such as biomedical, geo-textile and antistatic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman MS, Khattab TA (2019) Development of one-step water-repellent and flame-retardant finishes for cotton. ChemistrySelect 4:3811–3816

    CAS  Google Scholar 

  • Abou-Yousef H, Khattab TA, Youssef YA, Al-Balakocy N, Kamel S (2017) Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta 170:137–145

    PubMed  CAS  Google Scholar 

  • Alegret N, Dominguez-Alfaro A, Mecerreyes D (2018) 3D scaffolds based on conductive polymers for biomedical applications. Biomacromolecules 20:73–89

    PubMed  Google Scholar 

  • Ashayer-Soltani R, Hunt C, Thomas O (2016) Fabrication of highly conductive stretchable textile with silver nanoparticles. Text Res J 86:1041–1049

    CAS  Google Scholar 

  • Avila AG, Hinestroza JP (2008) Smart textiles: tough cotton. Nat Nanotechnol 3:458

    PubMed  CAS  Google Scholar 

  • Bober P, Stejskal J, Trchova M, Prokeˇs J, Sapurina I (2010) Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: a new route to conducting composites. Macromolecules 43:10406–10413

    CAS  Google Scholar 

  • Brahim S, Wilson AM, Narinesingh D, Iwuoha E, Guiseppi-Elie A (2003) Chemical and biological sensors based on electrochemical detection using conducting electroactive polymers. Microchim Acta 143:123–137

    CAS  Google Scholar 

  • Carpi F, De Rossi D (2006) Colours from electroactive polymers: electrochromic, electroluminescent and laser devices based on organic materials. Opt Laser Technol 38:292–305

    CAS  Google Scholar 

  • Castellanos-Ramos J, Navas-González R, Macicior H, Sikora T, Ochoteco E, Vidal-Verdú F (2010) Tactile sensors based on conductive polymers. Microsyst Technol 16:765–776

    CAS  Google Scholar 

  • Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G (2010) Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 22:5178–5182

    PubMed  CAS  Google Scholar 

  • Choi S, Jiang Z (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuators A: Phys 128:317–326

    CAS  Google Scholar 

  • Cruz G, Morales J, Castillo-Ortega M, Olayo R (1997) Synthesis of polyaniline films by plasma polymerization. Synth Met 88:213–218

    CAS  Google Scholar 

  • Dalton E, Surridge N, Jernigan J, Wilbourn K, Facci J, Murray RW (1990) Charge transport in electroactive polymers consisting of fixed molecular redox sites. Chem Phys 141:143–157

    CAS  Google Scholar 

  • Di J, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28:10529–10538

    PubMed  CAS  Google Scholar 

  • Dierickx W (1999) Opening size determination of technical textiles used in agricultural applications. Geotext Geomembr 17:231–245

    Google Scholar 

  • Du D, Yang X, Yang Y, Zhao Y, Wang Y (2019) Silver nanowire ink for flexible circuit on textiles. Micromachines 10:42

    PubMed Central  Google Scholar 

  • du Toit LC, Kumar P, Choonara YE, Pillay V (2016) Electroactive polymers and coatings. In: Hosseini M, Makhlouf ASH (eds) Industrial applications for intelligent polymers and coatings. Springer, pp 51–89

  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799

    Google Scholar 

  • Emam HE, Mowafi S, Mashaly HM, Rehan M (2014) Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydr Polym 110:148–155

    PubMed  CAS  Google Scholar 

  • Gashti MP, Pakdel E, Alimohammadi F (2016) Nanotechnology-based coating techniques for smart textiles. In: Hu J (ed) Active coatings for smart textiles. Elsevier, pp 243–268

  • Ghosh S, Mondal S, Ganguly S, Remanan S, Singha N, Das NC (2018) Carbon nanostructures based mechanically robust conducting cotton fabric for improved electromagnetic interference shielding. Fibers Polym 19:1064–1073

    CAS  Google Scholar 

  • Ghosh S et al (2019a) 3D-enhanced, high-performing, super-hydrophobic and electromagnetic-interference shielding fabrics based on silver paint and their use in antibacterial applications. ChemistrySelect 4:11748–11754

    CAS  Google Scholar 

  • Ghosh S et al (2019b) Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibers Polym 20:1161–1171

    CAS  Google Scholar 

  • Goto H, Yokoo A (2015) Redox active carbon materials from polyaniline: plasma carbonization, heat carbonization, and preparation of capacitors. Int J Polym Mater Polym Biomater 64:637–640

    CAS  Google Scholar 

  • Hasan MM et al (2019) Functionalization of polypropylene nonwoven fabrics using cold plasma (O2) for developing graphene-based wearable sensors. Sens Actuators A: Phys 300:111637

    CAS  Google Scholar 

  • Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mat Lett 2:188–194

    CAS  Google Scholar 

  • Jia Q, Shan S, Jiang L, Wang Y, Li D (2012) Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J Appl Polym Sci 125:3560–3566

    CAS  Google Scholar 

  • Kamalesh S, Tan P, Wang J, Lee T, Kang ET, Wang CH (2000) Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 52:467–478

    CAS  Google Scholar 

  • Karyakin AA (2010) Electropolymerized azines: a new group of electroactive polymers electropolymerization, vol 93. Wiley-VCH, Weinheim

    Google Scholar 

  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567

    CAS  Google Scholar 

  • Khalil AM, Hassan ML, Ward AA (2017) Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr Polym 157:503–511

    PubMed  CAS  Google Scholar 

  • Khan Z, Hussain JI, Hashmi AA, AL-Thabaiti SA (2017) Preparation and characterization of silver nanoparticles using aniline. Arab J Chem 10:S1506–S1511

    CAS  Google Scholar 

  • Khattab TA, Rehan M, Hamdy Y, Shaheen TI (2018a) Facile development of photoluminescent textile fabric via spray coating of Eu (II)-doped strontium aluminate. Ind Eng Chem Res 57:11483–11492

    CAS  Google Scholar 

  • Khattab TA, Rehan M, Hamouda T (2018b) Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohydr Polym 195:143–152

    PubMed  CAS  Google Scholar 

  • Khattab TA et al (2019a) Co-encapsulation of enzyme and tricyanofuran hydrazone into alginate microcapsules incorporated onto cotton fabric as a biosensor for colorimetric recognition of urea. React Funct Polym 142:199–206

    CAS  Google Scholar 

  • Khattab TA et al (2019b) Development of illuminant glow-in-the-dark cotton fabric coated by luminescent composite with antimicrobial activity and ultraviolet protection. J Fluoresc 29(3):703–710

    PubMed  CAS  Google Scholar 

  • Khattab TA, Mowafi S, El-Sayed H (2019c) Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers. Cellulose 26:9361–9371

    CAS  Google Scholar 

  • Kim KJ, Tadokoro S (2007) Electroactive polymers for robotic applications. Artif Muscles Sens 23:291

    Google Scholar 

  • Lai J, Yi Y, Zhu P, Shen J, Wu K, Zhang L, Liu J (2016) Polyaniline-based glucose biosensor: a review. J Electroanal Chem 782:138–153

    CAS  Google Scholar 

  • Laska J, Proń A, Lefrant S (1995) Phosphoric acid diesters protonated polyaniline: preparation, spectroscopic properties, and processability. J Polym Sci, Part A: Polym Chem 33:1437–1445

    CAS  Google Scholar 

  • Li D, Li Y, Feng Y, Hu W, Feng W (2015) Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J Mater Chem A 3:2135–2143

    CAS  Google Scholar 

  • Li T et al (2018) Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors. New J Chem 42:6247–6255

    CAS  Google Scholar 

  • Liao G, Li Q, Xu Z (2019) The chemical modification of polyaniline with enhanced properties: a review. Prog Org Coat 126:35–43

    CAS  Google Scholar 

  • Lin Z et al (2018) Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Func Mater 28:1704112

    Google Scholar 

  • Marin S, Mihail Vlasceanu G, Elena Tiplea R, Raluca Bucur I, Lemnaru M, Minodora Marin M, Mihai Grumezescu A (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604

    PubMed  CAS  Google Scholar 

  • Mehrotra V, Giannelis EP (1991) Metal-insulator molecular multilayers of electroactive polymers: intercalation of polyaniline in mica-type layered silicates. Solid State Commun 77:155–158

    Google Scholar 

  • Mehrotra V, Giannelis EP (1992) Nanometer scale multilayers of electroactive polymers: intercalation of polypyrrole in mica-type silicates. Solid State Ionics 51:115–122

    CAS  Google Scholar 

  • Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    CAS  Google Scholar 

  • Mowafi S, Kafafy H, Arafa A, Haggag K, Rehan M (2018) Facile and environmental benign in situ synthesis of silver nanoparticles for multifunctionalization of wool fibers. Environ Sci Pollut Res 25:29054–29069

    CAS  Google Scholar 

  • Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843

    PubMed  CAS  Google Scholar 

  • Ning C, Zhou Z, Tan G, Zhu Y, Mao C (2018) Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci 81:144–162

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ozkan BC, Soganci T, Turhan H, Ak M (2019) Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochim Acta 295:1044–1051

    CAS  Google Scholar 

  • Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci: Adv Mater Dev 1:431–453

    Google Scholar 

  • Park CS, Lee C, Kwon OS (2016) Conducting polymer based nanobiosensors. Polymers 8:249

    PubMed Central  Google Scholar 

  • Pernaut J-M, Reynolds JR (2000) Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. a redox chemistry approach. J Phys Chem B 104:4080–4090

    CAS  Google Scholar 

  • Rac-Rumijowska O, Maliszewska I, Fiedot-Toboła M, Karbownik I, Teterycz H (2019) Multifunctional nanocomposite cellulose fibers doped in situ with silver nanoparticles. Polymers 11:562

    PubMed Central  Google Scholar 

  • Rani KV, Sarma B, Sarma A (2018) Plasma treatment on cotton fabrics to enhance the adhesion of reduced graphene oxide for electro-conductive properties. Diam Relat Mater 84:77–85

    Google Scholar 

  • Reglero Ruiz JA, Sanjuán AM, Vallejos S, García FC, García JM (2018) Smart polymers in micro and nano sensory devices. Chemosensors 6:12

    Google Scholar 

  • Rehan M, Hartwig A, Ott M, Gätjen L, Wilken R (2013) Enhancement of photocatalytic self-cleaning activity and antimicrobial properties of poly (ethylene terephthalate) fabrics. Surf Coat Technol 219:50–58

    CAS  Google Scholar 

  • Rehan M, Barhoum A, Van Assche G, Dufresne A, Gätjen L, Wilken R (2017) Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int J Biol Macromol 98:877–886

    PubMed  CAS  Google Scholar 

  • Rehan M, El-Naggar ME, Mashaly H, Wilken R (2018a) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41

    PubMed  CAS  Google Scholar 

  • Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R (2018b) Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym 197:227–236

    PubMed  CAS  Google Scholar 

  • Rehan M, Ahmed-Farid OA, Ibrahim SR, Hassan AA, Abdelrazek AM, Khafaga NI, Khattab TA (2019a) Green and sustainable encapsulation of Guava leaf extracts (Psidium guajava L.) into alginate/starch microcapsules for multifunctional finish over cotton gauze. ACS Sustain Chem Eng 7:18612–18623

    CAS  Google Scholar 

  • Rehan M, Barhoum A, Khattab TA, Gätjen L, Wilken R (2019b) Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles. Cellulose 26:5437–5453

    CAS  Google Scholar 

  • Ren J, Ren R-P, Lv Y-K (2018) Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem Eng J 349:111–118

    CAS  Google Scholar 

  • Sánchez-Cortés S, Berenguel RM, Madejón A, Pérez-Méndez M (2002) Adsorption of polyethyleneimine on silver nanoparticles and its interaction with a plasmid DNA: a surface-enhanced Raman scattering study. Biomacromolecules 3:655–660

    PubMed  Google Scholar 

  • Sen T, Mishra S, Shimpi NG (2016) Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv 6:42196–42222

    CAS  Google Scholar 

  • Sharifi H, Zabihzadeh SM, Ghorbani M (2018) The application of response surface methodology on the synthesis of conductive polyaniline/cellulosic fiber nanocomposites. Carbohydr Polym 194:384–394

    PubMed  CAS  Google Scholar 

  • Sheng M, Zhang L, Wang D, Li M, Li L, West JL, Fu S (2018) Fabrication of dye-doped liquid crystal microcapsules for electro-stimulated responsive smart textiles. Dyes Pigm 158:1–11

    CAS  Google Scholar 

  • Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25

    PubMed  CAS  Google Scholar 

  • Van der Velden NM, Kuusk K, Köhler AR (2015) Life cycle assessment and eco-design of smart textiles: The importance of material selection demonstrated through e-textile product redesign. Mater Des 84:313–324

    Google Scholar 

  • Wang H-N et al (2018a) Polyoxometalate-based metal–organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl Mater Interfaces 10:32265–32270

    PubMed  CAS  Google Scholar 

  • Wang K, Zheng B, Shrestha M, Schuelke T, Fan Q-H (2018b) Magnetically enhanced plasma exfoliation of polyaniline-modified graphene for flexible solid-state supercapacitors. Energy Storage Mater 14:230–237

    Google Scholar 

  • Wills K, Krzyzak K, Bush J, Ashayer-Soltani R, Graves J, Hunt C, Cobley A (2018c) Additive process for patterned metallized conductive tracks on cotton with applications in smart textiles. J Text Inst 109:268–277

    CAS  Google Scholar 

  • Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA (2018) Stimuli responsive conductive polyaniline membrane: in-filtration electrical tuneability of flux and MWCO. J Membr Sci 552:153–166

    CAS  Google Scholar 

  • Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–549

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Driver N, Tian Q, Jiang W, Liu H (2018) Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. J Biomed Mater Res, Part A 106:1887–1895

    CAS  Google Scholar 

  • Zhang Z et al (2019) Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres. Appl Surf Sci 495:143481

    CAS  Google Scholar 

  • Zhao Y et al (2015) Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization. Phys Chem Chem Phys 17:1498–1502

    PubMed  CAS  Google Scholar 

  • Zhao H et al (2019) Enhanced electrical conductivity of silver nanoparticles decorated fabrics with sandwich micro-structure coating layer based on “silver colloid effect”. Mater Lett 240:5–8

    CAS  Google Scholar 

Download references

Acknowledgments

Technical support from National Research Centre, Cairo, Egypt; is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Ahmed or Mohamed Rehan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Khattab, T.A., Mashaly, H.M. et al. Plasma activation toward multi-stimuli responsive cotton fabric via in situ development of polyaniline derivatives and silver nanoparticles. Cellulose 27, 2913–2926 (2020). https://doi.org/10.1007/s10570-020-02980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-02980-7

Keywords

Navigation