Skip to main content

Advertisement

Log in

Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids

Cellulose Aims and scope Submit manuscript

Abstract

Separation of cellulose Ι material from biomass with high efficiency by using ionic liquid (IL) is still challenging. In this work, three low-cost polyhydric protic ammonium-salt ILs (about $1000/t) based on sulphonethane anion were synthesized via one-step protonation reaction and firstly applied in the pretreatment of corn straw. After study on the influence of selected process parameters, such as extraction time, extraction temperature and the IL recycling, 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate ([BHEM]mesy) exhibits the highest efficiency with the content of cellulose up to 90 wt% in the cellulose material obtained at 140 °C for 6 h. Characterization analysis of the cellulose products certified that the cellulose materials maintain the same crystal structure of cellulose I as native corn straw. Gas chromatography–mass spectrometry and mass spectrometry methods were conducted to explore the possible separation mechanism. [BHEM]mesy shows the prospect of industrialization for cellulose I material separation from biomass owing to its low-cost and high-efficiency characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616

    Article  CAS  Google Scholar 

  • Abushammala H, Hettegger H, Bacher M, Korntner P, Potthast A, Rosenau T, Laborie MP (2017) On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2-the impact of lignin on the kinetics of cellulose acetylation. Cellulose 24:2767–2774

    Article  CAS  Google Scholar 

  • Achinivu EC, Howard RM, Li GQ, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119

    Article  CAS  Google Scholar 

  • Alcalde R, Garcia G, Atihan M, Aparicio S (2015) Systematic study on the viscosity of ionic liquids: measurement and prediction. Ind Eng Chem Res 54:10918–10924

    Article  CAS  Google Scholar 

  • Berglund L, Anugwom I, Hedenstrom M, Aitomaki Y, Mikkola JP, Oksman K (2017) Switchable ionic liquids enable efficient nanofibrillation of wood pulp. Cellulose 24:3265–3279

    Article  Google Scholar 

  • Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (reprinted from molecular physics, vol 19, pg 553–566, 1970). Mol Phys 100:65–73

    Article  Google Scholar 

  • Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102

    Article  CAS  Google Scholar 

  • Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4](-)-based solvent production at bulk scale. Green Chem 16:3098–3106

    Article  CAS  Google Scholar 

  • Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY (2017) Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9:1–11

    Article  CAS  Google Scholar 

  • Clough MT, Geyer K, Hunt PA, Mertes J, Welton T (2013) Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys Chem Chem Phys 15:20480–20495

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Aung EM, Fujii S, Hosomi S, Kimizu M, Ninomiya K, Takahashi K (2017) Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohyd Polym 176:365–373

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13:3375–3385

    Article  CAS  Google Scholar 

  • George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734

    Article  CAS  Google Scholar 

  • Ghasemi M, Alexandridis P, Tsianou M (2017) Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement. Cellulose 24:571–590

    Article  CAS  Google Scholar 

  • Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem Rev 115:11379–11448

    Article  CAS  PubMed  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  PubMed  Google Scholar 

  • Hamid SBA, Amin M, Ali ME (2014) Zeolite supported ionic liquid catalyst for the synthesis of nano-cellulose from palm tree biomass. Adv Mater Res 925:52–56

    Article  Google Scholar 

  • He T, Zhang YM, Zhu YA, Wen W, Pan Y, Wu JL, Wu JH (2016) Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuels 30:2204–2208

    Article  CAS  Google Scholar 

  • Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82:685–696

    Article  CAS  Google Scholar 

  • Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44:1257–1288

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state Cp Mas C-13 Nmr-study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Jin CF, Jiang YF, Niu T, Huang JG (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Lamaming J, Hashim R, Leh CP, Sulaiman O, Sugimoto T, Nasir M (2015) Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohyd Polym 134:534–540

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764

    Article  CAS  Google Scholar 

  • Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166

    Article  CAS  Google Scholar 

  • Lopes AMD, Bogel-Lukasik R (2015) Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. Chemsuschem 8:947–965

    Article  CAS  PubMed  Google Scholar 

  • Ma YB, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. Chemsuschem 8:4030–4039

    Article  CAS  PubMed  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    Article  CAS  Google Scholar 

  • Meng XQ, Devemy J, Verney V, Gautier A, Husson P, Andanson JM (2017) Improving cellulose dissolution in ionic liquids by tuning the size of the ions: impact of the length of the alkyl chains in tetraalkylammonium carboxylate. Chemsuschem 10:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Monteil-Rivera F, Phuong M, Ye MW, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364

    Article  CAS  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245

    Article  CAS  PubMed  Google Scholar 

  • Pena-Pereira F, Namiesnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chemsuschem 7:1784–1800

    Article  CAS  PubMed  Google Scholar 

  • Pinkert A, Goeke DF, Marsh KN, Pang SS (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136

    Article  CAS  Google Scholar 

  • Prozil SO, Evtuguin DV, Lopes LPC (2012) Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind Crop Prod 35:178–184

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  CAS  PubMed  Google Scholar 

  • Segal LC, Creely J, Martin AEJ, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shen XP, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

    Article  Google Scholar 

  • Silveira MHL, Morais ARC, Lopes AMD, Olekszyszen DN, Bogel-Lukasik R, Andreaus J, Ramos LP (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chemsuschem 8:3366–3390

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A (2012) Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J Microbiol Biotechnol 28:473–483

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16

    Google Scholar 

  • Sun J, Konda NVSNM, Parthasarathi R, Dutta T, Valiev M, Xu F, Simmons BA, Singh S (2017) One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem 19:3152–3163

    Article  CAS  Google Scholar 

  • Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  PubMed  Google Scholar 

  • Yan PF, Xu ZW, Zhang C, Liu XM, Xu WJ, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang QW, Xu D, Zhang JZ, Zhu YM, Zhang ZG, Qian C, Ren QL, Xing HB (2015) Long-chain fatty acid-based phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity: synthesis, characterization, and application in extraction. ACS Sustain Chem Eng 3:309–316

    Article  CAS  Google Scholar 

  • Zweckmair T, Hettegger H, Abushammala H, Bacher M, Potthast A, Laborie MP, Rosenau T (2015) On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 1-analysis, acetylating agent, influence of water, and mechanistic considerations. Cellulose 22:3583–3596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the National Basic Research Program of China (973 Program) [2015CB251401] and the National Natural Science Foundation of China [Nos. 21476234, 21210006, 21336002, 21606240, 21406230].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingmei Lu or Suojiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2018_1785_MOESM1_ESM.docx

Experimental details regarding preparation of neutral detergent solvent, preparation of biomass materials, characterization of the ILs (Figure S1), compositional analysis and all the characterization Figures (Figure S2 – S5) (DOCX 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Lu, X., Zhang, Y. et al. Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose 25, 3241–3254 (2018). https://doi.org/10.1007/s10570-018-1785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1785-4

Keywords

Navigation