Skip to main content
Log in

A novel monosodium-glutamate-based flame retardant containing phosphorus for cotton fabrics

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel bio-based flame retardant ammonium salt of sodium glutamate tetramethylenephosphonic acid (ASGTMPA) was synthesized for cotton. The structure of ASGTMPA was characterized by nuclear magnetic resonance. When the concentration of ASGTMPA was 30%, the limit oxygen index of treated cotton fabric reached 39.5% and was 26.3% after 50 laundering cycles. TG and TG-IR results suggested that ASGTMPA-treated cotton remarkably promoted dehydration of cellulose to form char and reduced production of flammable volatiles. Cone calorimetry and thermogravimetry tests indicated that the ASGTMPA-treated cotton fabric had a lower decomposing temperature and promoted char formation, with peak heat release rate and total heat release lower than those of unfinished cotton fabrics. In a vertical flammability test, the treated cotton fabric showed no after-flame or after-glow, and the char length was 35 mm. The Fourier-transform infrared spectra showed that ASGTMPA combined with cellulose through P–O–C and –COOC– covalent bonds. SEM images revealed that the morphologies of the original and treated cotton fibers were similar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Okeil A, El-Sawy SM, Abdel-Mohdy FA (2013) Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydr Polym 92(2):2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2013) Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects. Polym Degrad Stab 98:579–589

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2014a) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149

    Article  CAS  Google Scholar 

  • Alongi J, Bosco F, Carosio F, Di Blasio A, Malucelli G (2014b) A new era for flame retardant materials Mater. Today 17:152–153

    Google Scholar 

  • Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1(9):1413–1422

    Article  CAS  Google Scholar 

  • Breulet H, Steenhuizen T (2005) Fire testing of cables: comparison of SBI with FIPEC/Europacable tests. Polym Degrad Stab 88(1):150–158

    Article  CAS  Google Scholar 

  • Carosio F, Fontaine G, Alongi J, Bourbihot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7(22):12158–12167

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Condon B, Graves E, Uchimiya M, Fortier C, Easson M (2011) Flame retardant properties of triazinephosphonates derivative with cotton fabric. Fibers Polym 12:334–339

    Article  CAS  Google Scholar 

  • Chang S, Condon B, Nguyen T-M, Graves E, Smith J (2012) Antiflammable properties of capable phosphorus–nitrogen-containing triazine derivatives on cotton. Fire Polym VI New Adv Flame Retard Chem Sci 1118:123–137

    Article  CAS  Google Scholar 

  • Chen Y, Frendi A, Tewari SS, Sibulkin M (1991) Combustion properties of pure and fire-retarded cellulose. Combust Flame 841:21–40

    Google Scholar 

  • Cheng X, Yang CQ (2009a) Flame retardant finishing of cotton fleece fabric. Part V. Phosphorus-containing maleic acid oligomers. Fire Mater 33(8):365–375

    Article  CAS  Google Scholar 

  • Cheng X, Yang CQ (2009b) Flame retardant finishing of cotton fleece fabric. Part IV. Bifunctional carboxylic acids. J Fire Sci 27:431–446

    Article  CAS  Google Scholar 

  • Dong C, Lu Z, Wang P, Zhu P, Li X, Sui S, Liu J (2016) Flammability and thermal properties of cotton fabrics modified with a novel flame retardant containing triazine and phosphorus components. Text Res J 87(11):1367–1376. https://doi.org/10.1177/0040517516652349

    Article  CAS  Google Scholar 

  • Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974

    Article  CAS  Google Scholar 

  • Gaan S, Sun G (2009) Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol 84(1):108–115

    Article  CAS  Google Scholar 

  • Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796

    Article  CAS  Google Scholar 

  • Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  CAS  Google Scholar 

  • Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA (2005) Developments in flame retardant textiles-a review. Polym Degrad Stab 88:3–12

    Article  CAS  Google Scholar 

  • Hu S, Hu Y, Song L, Lu H (2010) Effect of modified organic–inorganic hybrid materials on thermal properties of cotton fabrics. J Therm Anal Calorim 103(2):423–427

    Article  CAS  Google Scholar 

  • Jenny A, Riccardo AC, Francesca B, Federico C, Alessandro DB, Fabio C et al (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117

    Article  CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CW (2011a) Effect of oxygen plasma pre-treatment and titanium dioxide overlay coating on flame retardant finished cotton fabrics. Bio Res 6(2):1454–1474

    CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CWM (2011b) Flame-retardant finishing in cotton fabrics using zinc oxide co-catalyst. J Appl Polym Sci 12:612–621

    Article  CAS  Google Scholar 

  • Lambert J, Shurvell H, Lightner D, Cooks R (1998) Organic structural spectroscopy. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Lecoeur E, Vroman I, Bourbigot S, Lam TM, Delobel R (2001) The fire-retarding effect of inorganic phosphorus compounds on the combustion of cellulosic materials. Polym Degrad Stab 74(3):487–492

    Article  CAS  Google Scholar 

  • Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929

    Article  CAS  Google Scholar 

  • Levchik SV, Piotrowski A, Weil ED, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stab 88:57–62

    Article  CAS  Google Scholar 

  • Li XH, Chen HY, Wang WT, Liu YQ, Zhao PH (2015) Synthesis of a formaldehyde-free phosphoruse nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stab 120:193–202

    Article  CAS  Google Scholar 

  • Liu W, Chen L, Wang Y-Z (2012) A novel phosphorus-containing flame retardant for the form aldehyde-free treatment of cotton fabrics. Polym Degrad Stab 97:2487–2491

    Article  CAS  Google Scholar 

  • Liu X, Zhang Q, Cheng B, Ren Y, Zhang Y, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811. https://doi.org/10.1007/s10570-017-1550-0

    Article  CAS  Google Scholar 

  • Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C, Cuttica F, Casale A (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039

    Article  CAS  Google Scholar 

  • Nada A, Hamed S, Soliman S, Mongy S (2005) Spectroscopic and ion exchange studies on modified cotton linters. J Sci Ind Res 64:1003

    CAS  Google Scholar 

  • Nehra S, Hanumansetty S, O’Rear EA et al (2014) Enhancement in flame retardancy of cotton fabric by using surfactant-aided polymerization. Polym Degrad Stab 109(109):137–146

    Article  CAS  Google Scholar 

  • Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardant on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrol 40–41:511–524

    Article  Google Scholar 

  • Price D, Pyrah K, Hull TR et al (2002) Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polym Degrad Stab 77(2):227–233

    Article  CAS  Google Scholar 

  • Ren Y, Huo T, Qin Y, Liu X (2018) Preparation of flame retardant polyacrylonitrile fabric based on sol–gel and layer-by-layer assembly. Materials (Basel) 11(4):483. https://doi.org/10.3390/ma11040483

    Article  CAS  Google Scholar 

  • Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, Doring M et al (2008) Pyrolisis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener. Eur Polym J 44:704–715

    Article  CAS  Google Scholar 

  • Shao ZB et al (2014) An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl Mater Interfaces 6:7363–7370

    Article  CAS  PubMed  Google Scholar 

  • Siriviriyanun A, O’Rear EA, Yanumet N (2008) Self-extinguishing cotton fabric with minimal phosphorus deposition. Cellulose 15(5):731–737

    Article  CAS  Google Scholar 

  • Sponton M, Ronda JC, Galia M, Cadiz V (2009) Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94:102–106

    Article  CAS  Google Scholar 

  • Wang S, Sui X, Li Y, Li J, Xu H, Zhong Y et al (2016) Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym Degrad Stab 128:22–28

    Article  CAS  Google Scholar 

  • Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. Fire Sci 26(3):243–281

    Article  CAS  Google Scholar 

  • Wu W, Yang CQ (2004) Comparison of DMDHEU and melamine- formaldehyde as the bonding agents for a hydroxyl-functional organophosphorus flame retarding agent on cotton. J Fire Sci 22:125–142

    Article  CAS  Google Scholar 

  • Xiaolin H (2010) The determination of sodium glutamate content in MSG. China Well Rock Salt 41(5):35–36

    Google Scholar 

  • Xie JX (1987) Application of infrared spectroscopy in organic chemistry and pharmaceutical chemistry, 1st edn. Science Press, Beijing, Chapter 5, pp 71, 77–78 and Chapter 16, p 354

  • Xie KL, Gao AQ, Zhang YS (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym 98:706–710

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with uv-cured flame retardant coatings. Ind Eng Chem Res 51(15):5394–5401. https://doi.org/10.1021/ie202468u

    Article  CAS  Google Scholar 

  • Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A (2018) Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. J Hazard Mater 357:73–80. https://doi.org/10.1016/j.jhazmat.2018.05.057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018D009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhong, L., Li, S. et al. A novel monosodium-glutamate-based flame retardant containing phosphorus for cotton fabrics. Cellulose 26, 2715–2728 (2019). https://doi.org/10.1007/s10570-018-02241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-02241-8

Keywords

Navigation