Skip to main content
Log in

Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the industry of cement-based products, various lignocellulosic materials are used as reinforcing elements. These cellulosic materials are presented as potential alternatives because of their sustainability, low cost and technical features. However, plant fibers, in spite of good mechanical performance as reinforcement materials, exhibit a number of shortcomings in relation to durability in the alkaline environment of cementitious materials as well as dimensional variation due to their characteristic hygroscopic behavior. Thus, hornification emerges as an alternative, economic and simple pretreatment that is expected to minimize these problems. This study evaluated the physical, chemical and morphological effects of four hornification cycles on pine pulp and innovative eucalyptus pulps, both bleached and unbleached, proving that the treatment does not deteriorate the characteristics of interest of the fibers. Hornification modifies fiber surfaces and reduces their water absorption capacity, turning the pulps into more suitable materials and giving them the technical capability to reinforce brittle inorganic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida AEFS, Tonoli GHD, Santos SF, Savastano H Jr (2013) Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem Concr Compos 42:49–58. doi:10.1016/j.cemconcomp.2013.05.001

    Article  CAS  Google Scholar 

  • Ardanuy M, Claramunt J, Arevalo R, Pares F, Aracri E, Vidal T (2012) Nanofibrillated cellulose (nfc) as a potential reinforcement for high performance cement mortar composites. BioResources 7:3883–3894

    Google Scholar 

  • Beck CS, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. doi:10.1021/bm049300p

    Article  Google Scholar 

  • Blomstedt M, Kontturi E, Vuorinen T (2007) Surface modification of eucalyptus pulp by carboxymethylcellulose: effects on fiber properties and sheet strength. O Pap 68:51–63

    CAS  Google Scholar 

  • Caux SL, Amorim CS, Barony AB, Frossard AV (2010) Limitations of bleached eucalyptus pulp viscosity as determinant for its quality. O Pap 71:13

    Google Scholar 

  • Claramunt J, Ardanuy M, Garcia-Hortal JA (2010) Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites. Carbohydr Polym 79:200–205. doi:10.1016/j.carbpol.2009.07.057

    Article  CAS  Google Scholar 

  • Claramunt J, Ardanuy M, Garcia-Hortal JA, Toledo RD (2011) The hornification of vegetable fibers to improve the durability of cement mortar composites. Cem Concr Compos 33:586–595. doi:10.1016/j.cemconcomp.2011.03.003

    Article  CAS  Google Scholar 

  • Correia VC, Santos V, Sain M, Santos SG, Leao LA, Savastano HJ (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose. doi:10.1007/s10570-016-0996-9

    Google Scholar 

  • Diniz J, Gil MH, Castro J (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. doi:10.1007/s00226-003-0216-2

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. doi:10.1002/mame.201300008

    Article  CAS  Google Scholar 

  • Ferreira SR, Lima PRL, Silva FA, Toledo Filho RD (2012) Effect of sisal fiber hornification on the adhesion with portland cement matrices. Matéria 17:1024–1034. doi:10.1590/S1517-70762012000200008

    CAS  Google Scholar 

  • Ferreira SR, Lima PRL, Silva FA, Toledo Filho RD (2014) Effect of sisal fiber hornification on the fiber-matrix bonding characteristcs and bending behavior of cement based composites. Key Eng Mater 600:421–432. doi:10.4028/www.scientific.net/KEM.600.421

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • French A, Santiago CM (2013) Cellulose polymorphy, crystallite size, and the 366 Segal crystallinity index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Gulsoy SK, Tufek S (2013) Effect of chip mixing ratio of Pinus pinaster and Populus tremula on Kraft Pulp and Paper Properties. Ind Eng Chem Res 52:2304–2308. doi:10.1021/ie302709e

    Article  CAS  Google Scholar 

  • Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2012) A simple review of soil reinforcement by using natural and synthetic fibers. Constr Build Mater 30:100–116. doi:10.1016/j.conbuildmat.2011.11.045

    Article  Google Scholar 

  • Howard RC (1990) The effects of recycling on paper quality. J Pulp Pap Sci 16:143–149

    Google Scholar 

  • Ikai S, Reichert JR, Rodrigues AV, Zampieri VA (2010) Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Constr Build Mater 24:171–180. doi:10.1016/j.conbuildmat.2009.06.019

    Article  Google Scholar 

  • International Organization For Standarization. ISO (2004) ISO 5263-1: Pulps—Laboratory Wet Disintegration—part 1: Disintegration of chemical pulps. ISO Press, Geneva

    Google Scholar 

  • Jamrozik E, De Klerk N, Musk AW (2011) Asbestos-related disease. Intern Med J 41:372–380. doi:10.1111/j.1445-5994.2011.02451.x

    Article  CAS  Google Scholar 

  • Jamshidi M, Ramezanianpour AA (2011) Laboratory and industrial investigations on hybrid of acrylic and glass short fibers as an alternative for substituting asbestos in Hatschek process. Constr Build Mater 25:298–302. doi:10.1016/j.conbuildmat.2010.06.026

    Article  Google Scholar 

  • Jayme G (1943) Über die reaktionsfähigkeit von zellstoffen. Cellulosechemie 21:73–86

    CAS  Google Scholar 

  • Jayme G, Hunger G (1957) The rearrangement of microfibrils in dried cellulose and the implication of this structure alteration on pulp properties. Fundamentals of Papermaking Fibres, Cambridge

    Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40. doi:10.1023/A:1009292120151

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kohnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233. doi:10.1016/j.carbpol.2010.02.023

    Article  Google Scholar 

  • Kontturi E, Vuorinen T (2009) Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose 16:65–74. doi:10.1007/s10570-008-9235-3

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. doi:10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  • Letkova E, Letko M, Vrska M (2011) Influence of recycling and temperature on the swelling ability of paper. Chem Pap 65:822–828. doi:10.2478/s11696-011-0089-z

    Article  CAS  Google Scholar 

  • Loelovich M, Levkin A, Figovsky O (2010) Study of cellulose paracrystallinity. BioResources 5:1393–1407

    Google Scholar 

  • Luna P, Lizarazo MJ, Mariño A (2016) Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: an exploratory study. Constr Build Mater 116:93–97. doi:10.1016/j.conbuildmat.2016.04.139

    Article  Google Scholar 

  • Lund K, de la Motte H, Brelid H, Westman G, Hanson C (2011) Diepoxide treatment of softwood kraft pulp: influence on absorption properties of fibre networks. Cellulose 18:1365–1375. doi:10.1007/s10570-011-9560-9

    Article  CAS  Google Scholar 

  • Macrae CF, Gruno IJ, Chisholm JA, Edgington PR, Mccabe P, Pidcock E, Rodriguez LM, Taylor R, Van-De SJ, Wood PA (2008) Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. doi:10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  • Mendes R (2001) Asbestos and disease: state-of-the-art review and a rationale for urgent change in current Brazilian policy. Cadernos de Saúde Pública 17:7–29. doi:10.1590/S0102-311X2001000100002

    Article  CAS  Google Scholar 

  • Mendes RF, Mendes LM, Savastano HJ, Glenn G, Tonoli GHD (2015) Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length. Polym Eng Sci 55:1273–1280. doi:10.1002/pen.24065

    Article  CAS  Google Scholar 

  • Minor JL (1994) Hornification: its origin and meaning. Prog Pap Recycl 3:93–95

    Google Scholar 

  • Monnerat CBAG, Da Silva Junior FG, Saxon VM (2007) Mixtures of Eucalyptus grandis x Eucalyptus urophylla and Pinus taeda wood chips for kraft pulp production by Lo-Solids (R) process. Sci For 35:19–29

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Morton JH, Cooke T, Akers SAS (2010) Performance of slash pine fibers in fiber cement products. Constr Build Mater 24:165–170. doi:10.1016/j.conbuildmat.2007.08.015

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchroton X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Ostlund A, Kohnke T, Nordstierna L, Nyden M (2010) NMR cryoporometry to study the fiber wall structure and the effect of drying. Cellulose 17:321–328. doi:10.1007/s10570-009-9383-0

    Article  CAS  Google Scholar 

  • Ostlund A, Idstrom A, Olsson C, Larsson P, Nordstierna L (2013) Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 20:1657–1667. doi:10.1007/s10570-013-9982-7

    Article  Google Scholar 

  • Park S, Jhonson D, Ishizawa C, Parilla P, Davis M (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647. doi:10.1007/s10570-009-9321-1

    Article  CAS  Google Scholar 

  • Pedrazzi C, Colodette JL, de Oliveira RC, Wille VKD (2013) Morphologic evaluation of Eucalyptus Kraft pulp fibers with different xylans contents. Sci For 41:515–522

    Google Scholar 

  • Proniewicz LM, Paluszkiewicz C, Bircznska AW, Majcherezyk H, Koniezna ABA (2001) FT-IR and FT-Raman study of Hidrothermal degradated cellulose. J Mol Struct 596:163–169. doi:10.1016/S0022-2860(01)00706-2

    Article  CAS  Google Scholar 

  • Santos SFD, Tonoli GHD, Mejia JEB, Fiorelli J, Savastano H H Jr (2015) Non-conventional cement-based composites reinforced with vegetable fibers: a review of strategies to improve durability. Mater Constr 65:041. doi:10.3989/mc.2015.05514

    Google Scholar 

  • Silverstein R, Kiemle D, Bryce D (2005) Spectrometric Identification of Organic Compunds, 7th edn. John Wiley & Sons, New York

    Google Scholar 

  • Somwang K, Enomae T, Isogai A, Onabe F (2002) Changes in crystallinity and re-swelling capability of pulp fibers by recycling treatment. Jpn Tappi J 56:103–109

    Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.1016/j.biortech.2010.02.104

    Article  CAS  Google Scholar 

  • Technical Association Of Pulp And Paper Industry. Tappi (2004) Tappi useful method T 230 om-04: viscosity of pulp (Capillary viscometer method). Tappi Press, Atlanta

    Google Scholar 

  • Technical Association Of Pulp And Paper Industry. Tappi (2007) Tappi useful method T 271 om-07: fiber length of pulp and paper by automated optical analyzer using polarized light. Tappi Press, Atlanta

    Google Scholar 

  • Technical Association Of Pulp And Paper Industry. Tappi (2011) Tappi useful method UM 256: water retention value (WRV). Tappi Press, Atlanta

    Google Scholar 

  • Toledo RD, Ghavami K, England GL, Scrivener K (2003) Development of vegetable fibre-mortar composites of improved durability. Cem Concr Compos 25:185–196. doi:10.1016/S0958-9465(02)00018-5

    Article  Google Scholar 

  • Tonoli GHD, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Lahr FAR (2009) Cellulose modified fibres in cement based composites. Compos Part A Appl Sci 40:2046–2053. doi:10.1016/j.compositesa.2009.09.016

    Article  Google Scholar 

  • Tonoli GHD, Belgacem MN, Bras J, Pereira-da-Silva MA, Lahr FAR, Savastano H Jr (2012) Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 47:4167–4177. doi:10.1007/s10853-012-6271-z

    Article  CAS  Google Scholar 

  • Verma PK, Bhardwaj NK, Singh SP (2014) Selective hydrolysis of amorphous cellulosic fines for improvement in drainage of recycled pulp based on ratios of cellulase components. J Ind Eng Chem 22:229–239. doi:10.1016/j.jiec.2014.07.015

    Article  Google Scholar 

  • Wei J, Meyer C (2014) Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Appl Surf Sci 289:511–523. doi:10.1016/j.apsusc.2013.11.024

    Article  CAS  Google Scholar 

  • Wistara N, Zhang XJ, Young RA (1999) Properties and treatments of pulps from recycled paper. Part II. Surface properties and crystallinity of fibers and fines. Cellulose 6:325–348. doi:10.1023/A:1009255808215

    Article  CAS  Google Scholar 

  • Wu S, Shen D, Hu J, Zhang H, Xiao R (2016) Role of β-O-4 glycosidic bond on thermal degradation of cellulose. J Anal Appl Pyrolysis 119:147–156. doi:10.1016/j.jaap.2016.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Framework Agreement of Collaboration between Eduardo Torroja Institute for Construction Sciences—IETcc/CSIC (Spain) and Faculty of Animal Science and Food Engineering—FZEA/USP (Brazil; ref: 2013040043) and to The Brasilian National Council for Scientific and Technological Development—CNPq (project #306386/2013-5, #150384/2016-5), and finally, to the I-COOP program of CSIC (ref: COOPA20089-2015) for its financial support. The authors are also grateful to Coordination of Improvement of Higher Education Personnel—CAPES and São Paulo Research Foundation—FAPESP (process #2013/23810-8, #2012/51467–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Eduardo Mejia Ballesteros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros, J.E.M., dos Santos, V., Mármol, G. et al. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24, 2275–2286 (2017). https://doi.org/10.1007/s10570-017-1253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1253-6

Keywords

Navigation