Skip to main content

Advertisement

Log in

The influence of chemical treatment on the mechanical properties of windmill palm fiber

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bleached palm fiber without lignin, alkalized palm fiber without hemicelluloses and raw windmill palm fiber were prepared. Then, the chemical composition and the mechanical properties of the windmill palm fiber were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy and Raman microscopy were employed to characterize the structure and chemical composition. A universal material tester, nanoindentation and dynamic mechanical analysis were used to study the mechanical property of these samples. According to the results, bleach treatment removed most of the silica bodies as well as the lignin, smoothed the fiber surfaces and increased the hollowness to 50%. Alkali treatment removed most of the hemicelluloses, increased the surface roughness, and reduced the hollowness to 28%. Alkalized fibers have the highest tensile strength, elongation at break and elastic modulus, with values of 119.37 ± 27.21 MPa, 30.58 ± 5.87% and 10.75 ± 4.30 GPa, respectively. The raw material without treatment has the highest stiffness, while the alkalized samples are the most flexible fibers and sensitive to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8):4107–4121

    Article  CAS  Google Scholar 

  • Alajmi M, Shalwan A (2015) Correlation between mechanical properties with specific wear rate and the coefficient of friction of graphite/epoxy composites. Materials 8:4162–4175

    Article  Google Scholar 

  • Aldousiri B, Alajmi M, Shalwan A (2013) Mechanical properties of palm fiber reinforced recycled HDPE. Adv Mater Sci Eng 2013:511–516

  • Binoj JS, Raj RE, Sreenivasan VS, Thusnavis GR (2016) Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. J Bionic Eng 13:156–165

    Article  Google Scholar 

  • Chowdhury MNK, Beg MDH, Khan MR, Mina MF (2013) Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose 20(3):1477–1490

    Article  CAS  Google Scholar 

  • Dan-Mallam Y, Abdullah MZ, Yosuff PSM (2013) Impact strength, microstructure, and water absorption properties of kenaf/polyethylene terephthalate (PET) fiber-reinforced polyoxymethylene (POM) hybrid composites. J Mater Res 28(16):2142–2146

    Article  CAS  Google Scholar 

  • Dehghani A, Ardekani SM, Al-Maadeed MA, Hassan A, Wahit MU (2013) Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des 52:841–848

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maizecell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  Google Scholar 

  • Dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714

    Article  Google Scholar 

  • Eder M, Arnould O, Dunlop JW, Hornatowska J, Salmén L (2013) Experimental micromechanical characterisation of wood cell walls. Wood Sci Technol 47(1):163–182

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT Raman micros-copy of untreated natural plant Wbres. Spectrochim Acta A 53:2383–2392

    Article  Google Scholar 

  • Fabiyi JS, Ogunleye BM (2015) Mid-infrared spectroscopy and dynamic analysis of heat-treated obeche (Triplochiton scleroxylon) wood. Maderas Cienc Technol 17:5–16

    Google Scholar 

  • Gale JD, Achuthan A (2014) The effect of work-hardening and pile-up on nanoindentation measurements. J Mater Sci 49:5066–5075

    Article  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectrosc Int J 21:69–89

    Article  CAS  Google Scholar 

  • Gierlinger N, Sapei L, Paris O (2008) Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta 227:969–980

    Article  CAS  Google Scholar 

  • Goh KY, Ching YC, Chuah CH, Abdullah LC, Liou NS (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23:379–390

    Article  CAS  Google Scholar 

  • Gowthaman S, Sankar CG, Chandrakumar P (2017) Evaluation of tensile properties of natural silk and coir fibers. In: Bajpai RP, Chandrasekhar U (eds) Innovative design and development practices in aerospace and automotive engineering. Springer, Singapore, pp 393–399

  • Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK (2012) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109:981–989

    Article  CAS  Google Scholar 

  • Jawaid M, Khalil H, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos Part B 45:619–624

    Article  CAS  Google Scholar 

  • Kacuráková M, Wellner N, Ebringerova A, Hromádková Z, Wilson RH, Belton PS (1999) Characterisation of xylan-type polysaccha-rides and associated cell wall components by FT-IR and FT-Ra-man spectroscopies. Food Hydrocoll 13:35–41

    Article  Google Scholar 

  • Khan GMA, Shams MSA, Kabir MR, Gafur MA, Terano M, Alam MS (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128:1020–1029

    Article  Google Scholar 

  • Kim JW, Park S, Harper DP, Rials TG (2013) Structure and thermomechanical properties of stretched cellulose films. J Appl Polym Sci 128:181–187

    Article  CAS  Google Scholar 

  • Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5):1449–1480

    Article  CAS  Google Scholar 

  • Ma J, Zhang X, Zhou X, Xu F (2014) Revealing the changes in topochemical characteristics of poplar cell wall during hydrothermal pretreatment. Bioenerg Res 7:1358–1368

    Article  Google Scholar 

  • Mahjoub R, Jamaludin MY, Abdul Rahman MS, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113

    Article  Google Scholar 

  • N’Jock MY, Chicot D, Ndjaka JM, Lesage J, Decoopman X, Roudet E, Mejias A (2015) A criterion to identify sinking-in and piling-up in indentation of materials. Int J Mech Sci 90:145–150

    Article  Google Scholar 

  • Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40(4–5):446–452

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20

    Article  CAS  Google Scholar 

  • Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha AM (2007) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67(6):1132–1138

    Article  CAS  Google Scholar 

  • Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA (2012) Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres Text East Eur 20:21–24

    CAS  Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8

    Article  CAS  Google Scholar 

  • Shanmugam D, Thiruchitrambalam M (2013) Static and dynamic mechanical properties of alkali treated unidirectional continuous palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Mater Des 50:533–542

    Article  CAS  Google Scholar 

  • Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos A 41(10):1329–1335

    Article  Google Scholar 

  • Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly (lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124

    Article  CAS  Google Scholar 

  • Tran LQN, Minh TN, Fuentes CA, Chi TT, van Vuure AW, Verpoest I (2015) Investigation of microstructure and tensile properties of porous natural coir fiber for use in composite materials. Ind Crops Prod 65:437–445

    Article  CAS  Google Scholar 

  • Waldron D, Harwood J (2011) A preliminary investigation into the influence of chemical composition on the dynamic mechanical properties of flax (Linum usitattisimum) Straw. J Nat Fibers 8:126–142

    Article  Google Scholar 

  • Wang CG, Jiang ZH, Fei BH, Yu Y, Zhang SY (2012) Effects of chemical components on longitudinal MOE and hardness of wood cell wall. J Beijing For Univ 34(3):107–110

    Google Scholar 

  • Wang S, Zhang TH, Li JL, Fang LM, Liu XX, Guo M (2016) Exploration of the origin of the UV absorption performance of windmill palm fiber. Bioresources 11:2607–2616

    Google Scholar 

  • Wu Y, Wang S, Zhou D, Xing C, Zhang Y (2009) Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species. Wood Fiber Sci 41(1):64–73

    CAS  Google Scholar 

  • Wu Y, Wang S, Zhou D, Xing C, Zhang Y, Cai Z (2010) Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresour Technol 101(8):2867–2871

    Article  CAS  Google Scholar 

  • Xia ZG, Yao CE, Zhou JH, Ye WX, Xu WL (2016) Comparative study of cotton, ramie and wool fiber bundles’ thermal and dynamic mechanical thermal properties. Text Res J 86:856–867

    Article  CAS  Google Scholar 

  • Yang X, Liu XG, Shang LL, Ma JF, Tian GL, Yang SM (2016) Variation of tensile properties of single fibres of dendrocalamus farinosus bamboo. Bioresources 11:1609–1619

    Google Scholar 

  • Zhai SC, Li DG, Pan B, Sugiyama J, Itoh T (2012) Tensile strength of windmill palm (Trachycarpus fortunei) fiber bundles and its structural implications. J Mater Sci 47:949–959

    Article  CAS  Google Scholar 

  • Zhang TH, Guo M, Cheng L, Li X (2015) Investigations on the structure and properties of palm leaf sheath fiber. Cellulose 22(2):1039–1051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. 37 [2014]); and the Jiangsu Province Special Project, China (No. BY2014083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Chen, G., Li, X. et al. The influence of chemical treatment on the mechanical properties of windmill palm fiber. Cellulose 24, 1611–1620 (2017). https://doi.org/10.1007/s10570-017-1205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1205-1

Keywords

Navigation