Skip to main content
Log in

Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, ultrasound-assisted alkaline pretreatment is developed to evaluate the morphological and structural changes that occur during pretreatment of cellulose, and its effect on glucose production via enzymatic hydrolysis. The pretreated samples were characterized using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction to understand the change in surface morphology, crystallinity and the fraction of cellulose Iβ and cellulose II. The combined pretreatment led to a great disruption of cellulose particles along with the formation of large pores and partial fibrillation. The effects of ultrasound irradiation time (2, 4 h), NaOH concentration (1–10 wt%), initial particle size (20–180 μm) and initial degree of polymerization (DP) of cellulose on structural changes and glucose yields were evaluated. The alkaline ultrasonic pretreatment resulted in a significant decrease in particle size of cellulose, besides significantly reducing the treatment time and NaOH concentration required to achieve a low crystallinity of cellulose. More than 2.5 times improvement in glucose yield was observed with 10 wt% NaOH and 4 h of sonication, compared to untreated samples. The glucose yields increased with increase in initial particle size of cellulose, while DP had no effect on glucose yields. The glucose yields exhibited an increasing tendency with increase in cellulose II fraction as a result of combined pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • BIOVIA Materials Studio Reflex QPA datasheet. http://accelrys.com/products/datasheets/reflex-qpa.pdf. Accessed on February 2016

  • Briois B, Saito T, Pétrier C, Putaux J-L, Nishiyama Y, Heux L, Molina-Boisseau S (2013) Iα → Iβ transition of cellulose under ultrasonic radiation. Cellulose 20:597–603

    Article  CAS  Google Scholar 

  • Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011a) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  • Chundawat SPS, Bellesia G, Uppugundla N, Sousa LD, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011b) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  Google Scholar 

  • Ciolacu D, Popa VI (2007) The correlation between the reactivity and the supramolecular structure of allomorphs of cellulose. Rev Roum Chim 52:361–366

    CAS  Google Scholar 

  • Ciolacu D, Pitol-Filho L, Ciolacu F (2012) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68

    Article  CAS  Google Scholar 

  • Fengel D, Strobel C (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose II. Acta Polym 45:319–324

    Article  CAS  Google Scholar 

  • FMC Biopolymer, Avicel PH101, PH102, PH105, PH200. http://www.signetchem.com/downloads/datasheets/Fmc-biopolymer/. Accessed on April 2015

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci 110:10922–10927

    Article  CAS  Google Scholar 

  • Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83

    Article  CAS  Google Scholar 

  • Kolpak FJ, Blackwell J (1978) Mercerization of cellulose: 2. The morphology of mercerized cotton cellulose. Polymer 19:132–135

    Article  CAS  Google Scholar 

  • Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. Determination of the structure of mercerized cotton. Polymer 19:123–131

    Article  CAS  Google Scholar 

  • Lan W, Liu C, Yue F, Sun R, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydr Polym 86:672–677

    Article  CAS  Google Scholar 

  • Li Q, Ji G-S, Tang Y-B, Gu X-D, Fei J-J, Jiang H-Q (2012) Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous-N-methylmorpholine-N-oxide system for improved saccharification. Bioresour Technol 107:251–257

    Article  CAS  Google Scholar 

  • Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93

    Article  Google Scholar 

  • Madras G, McCoy BJ (2001) Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J 47:2341–2348

    Article  CAS  Google Scholar 

  • Madras G, Kumar S, Chattopadhyay S (2000) Continuous distribution kinetics for ultrasonic degradation of polymers. Polym Degrad Stab 69:73–78

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Combined use of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chem Eng J 215–216:811–818

    Article  Google Scholar 

  • Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-Cellulose I. Macromolecules 24:759–770

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DIL, Shin Y, Seo G (2005) FTIR Analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:1–13

    Article  Google Scholar 

  • Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuels 26:3777–3784

    Article  CAS  Google Scholar 

  • Schittenhelm N, Kulicke W-M (2000) Producing homologous series of molar masses for establishing structure-property relationships with the aid of ultrasonic degradation. Macromol Chem Phys 201:1976–1984

    Article  CAS  Google Scholar 

  • Shi W, Li S, Jia J, Zhao Y (2013) Highly efficient conversion of cellulose to bio-oil in hot-compressed water with ultrasonic pretreatment. Ind Eng Chem Res 52:586–593

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  • Sivalingam G, Agarwal N, Madras G (2004) Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J 50:2258–2265

    Article  CAS  Google Scholar 

  • Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) Cradle-to-grave—assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  CAS  Google Scholar 

  • SriBala G, Vinu R (2014) Unified kinetic model for cellulose deconstruction via acid hydrolysis. Ind Eng Chem Res 53:8714–8725

    Article  CAS  Google Scholar 

  • Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB III, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc A 357:335–353

    Article  CAS  Google Scholar 

  • Tayal A, Khan SA (2000) Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules 33:9488–9493

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2012a) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2012b) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299

    Article  CAS  Google Scholar 

  • Vijayalakshmi SP, Madras G (2005) Effect of initial molecular weight and solvents on the ultrasonic degradation of poly (ethylene oxide). Polym Degrad Stab 90:116–122

    Article  CAS  Google Scholar 

  • Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826

    Article  CAS  Google Scholar 

  • Wallenberger FT, Weston NE (2004) Natural fibers, plastics and composites. Springer, Berlin

    Book  Google Scholar 

  • Wong S-S, Kasapis S, Huang D (2012) Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocoll 26:365–369

    Article  CAS  Google Scholar 

  • Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316

    Article  CAS  Google Scholar 

  • Yunus R, Salleh SF, Abdullah N, Radiah D, Biak A (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  • Zhang J, Li D, Zhang X, Shi Y (1993) Solvent effect on carboxymethylation of cellulose. J Appl Polym Sci 49:741–746

    Article  CAS  Google Scholar 

  • Zhang Q, Benoit M, Vigier KDO, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Science and Technology (DST), India, for funding the project via Grant No. SR/S3/CE/074/2012. The National Center for Combustion Research and Development is sponsored by DST, India. The authors also thank the Editor-in-Chief, Dr. Alfred French, for his critical comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SriBala, G., Chennuru, R., Mahapatra, S. et al. Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose 23, 1725–1740 (2016). https://doi.org/10.1007/s10570-016-0893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0893-2

Keywords

Navigation