Skip to main content
Log in

Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing during gel spinning and post-hot-drawing at a high temperature after drying. A maximum total draw ratio of 27 was achieved with various SCNF contents investigated. The PVA crystal orientation increased when small amounts of SCNF were added, but decreased again as the SCNF content was increased above about 2 or 3 %, likely due to SCNF percolation resulting in network formation that inhibited alignment. SCNF fillers were effective in improving PVA fiber tensile properties (i.e., ultimate strength and elastic modulus). For example, the ultimate strength and modulus of PVA/SCNF composite fiber with a SCNF weight ratio of 6 were nearly 60 and 220 % higher than that of neat PVA. Shifts in the Raman peak at ~1,095 cm−1, which were associated with the C–O–C glycosidic bond of SCNF, indicated good stress-transfer between the SCNF and the PVA matrix due to strong interfacial hydrogen bonding. Cryogenic fractured scanning electron microscopy images of filled and unfilled PVA fibers showed uniform SCNF dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson SR, Esposito D, Gillette W, Zhu JY, Baxa U, McNeil SE (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J 13:35–41

    CAS  Google Scholar 

  • ASTM (1989) Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials vol D3379-75

  • Deepak KLN, Rao DN, Rao V (2012) Spectroscopic investigation of fs laser-induced defects in polymer and crystal media. In: Proceedings of the SPIE 8530, laser-induced damage in optical materials, December 4, 2012. doi:10.1117/12.975812

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Elices M, Llorca J (2002) Fiber fracture. Elsevier Science Ltd, Kidlington

    Google Scholar 

  • Endo R, Saito T, Isogai A (2013) TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers. Polymer 54:935–941. doi:10.1016/j.polymer.2012.12.035

    Article  CAS  Google Scholar 

  • French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  Google Scholar 

  • Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi:10.1021/bm101510r

    Article  CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    Article  CAS  Google Scholar 

  • Kanamoto T, Kiyooka S, Tovmasyan Y, Sano H, Narukawa H (1990) Effect of molecular-weight on drawing poly(vinyl alcohol) from solution-grown crystal mats. Polymer 31:2039–2046. doi:10.1016/0032-3861(90)90073-8

    Article  CAS  Google Scholar 

  • Ke B (1964) Newer methods of polymer characterization, vol 6. Interscience Publishers, New York, NY

    Google Scholar 

  • Lewin M, Pearce EM (1998) Handbook of fiber chemistry, 2nd edn. Marcel Dekker Inc., Brookly, NY

    Google Scholar 

  • Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Ind Crops Prod 58:212–219. doi:10.1016/j.indcrop.2014.04.035

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Morris MC, McMurdie HF, Evans EH, Paretzkin B, Parker HS, Panagiotopoulos NC (1981) Standard X-ray diffraction powder patterns: section 18. Data for 58 substances. National Bureau of Standards, Washington, DC

  • Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama M (1997) New synthetic fiber and its applications. Chem Fibers Int 47:296–297

    CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. doi:10.1016/j.carbpol.2013.04.086

    Article  CAS  Google Scholar 

  • Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromolecules 11:762–768

    Article  CAS  Google Scholar 

  • Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369. doi:10.1021/bm200141x

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786. doi:10.1177/004051755902901003

  • Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi:10.1021/am2016766

    Article  CAS  Google Scholar 

  • Seidel A (2008) Characterization and analysis of polymers, 1st edn. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. doi:10.1021/Bm2017542

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  • Sun W, Chen HS, Luo X, Qian HP (2001) The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res 31:595–601

    Article  CAS  Google Scholar 

  • Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Endo R, Hara T (2006) Effects of take-up speed of melt spinning on the structure and mechanical properties of maximally laser drawn Pa9-T fibers. Int Polym Process 21:263–271

    Article  CAS  Google Scholar 

  • Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624. doi:10.1021/bm101280f

    Article  CAS  Google Scholar 

  • Walther A, Timonen JV, Diez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi:10.1002/adma.201100580

    Article  CAS  Google Scholar 

  • Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047. doi:10.1007/s10570-012-9765-6

    Article  CAS  Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman-spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Wu QA, Chen N, Wang Q (2010) Crystallization behavior of melt-spun poly(vinyl alcohol) fibers during drawing process. J Polym Res 17:903–909

    Article  CAS  Google Scholar 

  • Xu XZ, Wang HR, Jiang L, Wang XN, Payne SA, Zhu JY, Li RP (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409–3416

    Article  CAS  Google Scholar 

  • Zheng ZH, Feldman D (1995) Synthetic fiber-reinforced concrete. Prog Polym Sci 20:185–210

    Article  CAS  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339. doi:10.1039/c1gc15103g

    Article  CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. doi:10.1016/j.carbpol.2009.10.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the USDA National Institute of Food and Agriculture Award (No. 2011-67009-20056). The authors would like to acknowledge Yan Qing and J.Y. Zhu for processing the short cellulose nanofibrils. Debby Sherman at Purdue University is kindly acknowledged for TEM imaging. The first author also wishes to acknowledge the National Nature Science Foundation of China (Nos. 51073601, 21174044), the Fundamental Research Funds for the Central Universities (No. 2011ZZ0011), the China Post-doctoral Science Foundation (2012M511791), and the 973 Program (2012CB025902) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lih-Sheng Turng or Craig M. Clemons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Ellingham, T., Sabo, R. et al. Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose 21, 4287–4298 (2014). https://doi.org/10.1007/s10570-014-0411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0411-3

Keywords

Navigation